Integrating the Socio-economic and Physical Drivers of Land-use Change at Climate relevant Scales: an Example with Biofuels

Joshua W. Elliott

N. Best, I. Foster, and T. Munson.

Vision: the CIM-EARTH framework

Decomposing models and PE – GE hybrids

Global physical outputs:

- Volumes (production, consumption, trade, etc.)
- Expenditures
- Emissions
- etc.

The Partial Equilibrium Economic Land-use Model

- The foundation is a hybrid initialization product:
 - A consistent data set with crop type resolution.
- Improve/validate with local data (inventory, satellite, ground truth). Example: NLCD 30m, 2001 and 2005.
- Support a variety of allocation algorithms.
- Enable users to specify kernel fcns for algorithms to
 - Build new capicity into the model (forests, etc.)
 - Add regional expertise over limited extents.
 - Include new data at any scale or extent to improve allocation.
- Model climate impacts to crop yields at HR.
- Validate model output at many scales.

The Partial Equilibrium Economic Land-use Model

- 2 optimizations per cell per year:
 - LC optimized given recent local prices and yields and land conversion costs.
 - Yield optimized on existing coverage given input costs, output prices, and yield potential.
- Few simplifications to facilitate ease of prototyping and development:
 - Farmers are ultra-local and myopic.
 - Linearized objective fcns.

Data sources for PEEL

- MODIS Annual Global Land Cover (MCD12Q1)
 - resolution: 15 seconds (~500m)
 - variables: primary cover (17 classes), confidence (%), secondary cover
 - time span: 2001-2008
- Harvested Area and Yields of 175 crops (Monfreda, Ramankutty, and Foley 2008)
 - resolution: 5 minutes (~9km)
 - variables: harvested area, yield, and scale of source
 - time span: 2000 (nominal)
- Global Irrigated Areas Map (GIAM)
 International Water Management Institute (IWMI)
 - resolution: 5 minutes (~9km)
 - variables: various crop system/practice classifications
 - time span: 1999 (nominal)

Data sources for PEEL

NLCD 2001

- resolution: 1 second (~30m)
- variables: various classifications including 4 developed classes and separate pasture/crop cover classes.
- time span: 2001

World Database on Protected Areas (WDPA)

- resolution: sampled from polygons; aggregated to 10km
- variables: protected areas
- time span: 2009
- FAO Gridded Livestock of the World (GLW)
 - resolution: 3 minutes (~5km)
 - variables: various livestock densities and production systems
 - time span: 2000 and 2005 (nominal)

Previous and on-going related efforts.

- The PEEL model is informed by previous work on LC downscaling, and from a huge literature on local LULCC modeling:
 - M. Heistermann, C. Muller, K. Ronneberger, Land in sight?: Achievements, deficits and potentials of continental to global scale land-use modeling, Agriculture, Ecosystems & Environment, Volume 114, Issues 2-4, June 2006.
 - Downscaling models for land-cover change forecasts:
 KLUM@GTAP, LEITAP/LCM, LandShift, ...
 - K. Ronneberger, M. Berrittella, F.Bosello & R. S.J. Tol 2006. Working Papers FNU-105, Research unit Sustainability and Global Change, Hamburg University, revised May 2006.
 - B. Eickhout, H. van Meijl, A. Tabeau, & E. Stehfest 2008. GTAP Working Papers 2608, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
 - Local LULCC modeling tools: CLUE, SLEUTH
 - Verburg, P.H. and Overmars, K.P., 2007. In: Modelling Land-Use Change. Progress and applications. The GeoJournal Library, Volume 90. Springer. Pp321-338.

Can we better characterize the impact of LUC on climate?

"From these results, we conclude that land cover change plays a significant role in anthropogenically forced climate change.
Because these changes coincide with regions of the highest human population this climate impact could have a disproportionate impact on human systems."

 Feddema et al., A comparison of a GCM response to historical anthropogenic land cover change and model sensitivity to uncertainty in present-day land cover representations. Climate Dynamics (2005) 25: 581–609

Can we better characterize the impact of LUC on climate?

A look at historical land-use and land-cover change

 Does dynamic LULCC downscaling add value to a simulation beyond what could be achieved by interpolating global model predictions to a finer grid resolution?

What drives land-cover?

Does corn price drive land conversion?

What does drive land conversion?

... but yield is a very complicated local affect of soil, weather, and management.

Which crops lose out first to development?

- In the 25 years between 1982 and 2007, ~23 M acres of US agricultural land were converted for development (about an acre/minute) 2007 National Resources Inventory.
- The most productive lands in the country are near developed areas (indeed, that's precisely why they were developed).
- Crops in near-urban areas:
 - 91% of US fruit, nuts and berries
 - 78% of vegetables and melons
- Further, this loss varies widely state-tostate, with the biggest percent losses in the East and NE (NJ, RI, MA, DE, and NH).

How about land-use change?

- AEZs use dozens of soil profiles and seasonal weather characteristics to characterize land suitability and potential within a region.
- PEEL will use 50,000 soil profiles and detailed weather from reanalysis products and simulations to characterize suitability and potential at grid and sub-grid scales.

CIM-EARTH Framework

- Implementation
 - AMPL specification framework
 - Preprocessing, calibration, and generation of instances
 - Solution of instances using the PATH algorithm
- Current model
 - Myopic computable general equilibrium model
 - Nested constant elasticity of substitution
 - Support for homogenous commodities
 - Ad valorem and excise taxes, export and import duties and endogenous tax rates

Experimental design: details of the representation in CEbio

Experimental design

CIM-EARTH-bio

Biofuels policy scenario:

- blenders fuel credit
- direct subsidies
- production target

Technology scenarios:

 aggregate yield scenarios loosely representing different climate and technology futures.

An overview of the data used in the CIM-EARTH-bio model

- GTAP v7 database
 - 2004 base year
 - Expenditure and revenue data
 - Energy volume data from GTAP-E
- Bio-fuel production costs and subsidies from literature
- Estimation of labor dynamics
 - 2008 UN population database
 - 2006 ILO economic activity rate database
 - 2008 US Bureau of Labor Statistics productivity database
- Estimation of land and natural resource dynamics
 - 2008 UN Food and Agriculture Organization database
 - 2007 World Energy Council survey of energy resources

Many key elements of a biofuels economy depend strongly on detailed dynamics

- Technology
 - Yield growth of conventional biofuels crops like corn and soy
 - Cellulose-to-ethanol conversion efficiencies
 - Development of new high-yield grasses or algae
- Land availability
- Fossil resource dynamics
 - Must get fossil resource prices, expectations and availability 'correct' to accurately forecast biofuels demand
 - Estimated Ultimately Recoverable (EUR) regional fossil resources are highly uncertain
- Global and regional policy changes
 - Governments are considering various options on biofuels and carbon policy for environmental, economic and security reasons.
 - What types of forecasts are robust to uncertain political landscapes?

Dynamic uncertainties: will linear yield increases continue or accelerate?

- Crop yields are key parameters
 - Hybrid/bio-tech crop-type development and distribution
 - Improved farming practices and adoption rates
 - Resource availability
 (e.g., fertilizers, irrigation)

Projections based on FAO data + various extrapolations

Dynamic uncertainties: how will biofuels and climate policies evolve?

- The U.S. uses several mechanisms to encourage biofuels
 - Ethanol mandates and production targets (portfolio standards)
 - Direct farm and bio-fuel subsidies
 - Gasoline excise tax exemption
- How will policies evolve in the future to meet targets?
 - Assume EISA 2007 is the final word in the U.S.?
 - 15 billion gallons of corn ethanol by 2022 (with ~0.5 \$/g subsidy)
 - 21 B gallons of advanced ethanol by 2022(with ~1.0 \$/g subsidy)
- How will biofuels be treated under carbon policies?
 - Biofuels are largely exempted from carbon policy in EU
 - Is it feasible to encourage sustainable land use practices through carbon policy?

Output: CEbio

Difference between 2010 and 2000 cell coverage fractions.

Difference between 2022 and 2000 cell coverage fractions.

Difference: 2010 and 2000 corn cell coverage fractions.

Difference: 2022 and 2000 corn cell coverage fractions.

Conclusions

- Significant uncertainties in biofuel studies
- Need large scale and high-fidelity models with efficient numerics and powerful computation.
- Can get high-resolution land use change estimates without expensive computing using dynamic downscaling
- Openness is essential for transparency
 - Several instances are available at www.cim-earth.org
 - Generators and preprocessing code available soon
 - Documentation being written as code is developed
 - Framework is extensible and modifiable by others
 - Many studies planned or in progress
- Much more work to do!

Potential next steps to improve CIM-EARTH-bio capabilities

- Enhance core modeling capabilities, e.g.:
 - Forward looking dynamics
 - Endogenous technological change and technology transitions
 - Vintages
 - Mechanisms for detailed policy representations
- Biofuels details and applications
 - Integrate support for agricultural ecological zones (AEZs); use to refine land use change projections
 - Integrate additional technology detail for biofuels production
 - Extensive sensitivity studies: technological change, policies, climate change, population growth, etc.

Anticipated future directions

Study improvements

- Improve region, sector details
- AEZ GE model of land endow
- Revenue recycling policies
- Endogenous computation of carbon amounts
- Account for land, labor, and capital carbon

Additional types of models

- Fully-dynamic CGE
- Dynamic-stochastic CGE

Framework improvements

- Research and development
- Capital and product vintages
- Overlapping consumer generations
- Many more....

PEEL model

- Nonlinear objectives
- Planning agents
- Forestry
- Yield emulator/climate impacts
- Urban sprawl model

Importers and Transportation

- Three types of transport
- Each is a homogenous good
- Leontief nest for transport

Dynamic uncertainties: how much fossil energy is left in reserve?

- General consensus is that oil production peaks in the next 10-20 years
- Major uncertainty in the quantity of ultimately recoverable reserves
- We forecast regional depletion curves E_r(t) with

$$\int_{2010}^{\infty} E_r(t)dt = R_r$$

 Vary reserve estimate to explore uncertainty

More future Directions

- Study improvements
 - Improve region and sector details
 - Incorporate revenue recycling policies
 - Endogenous tax rates that differ by region
 - Endogenous computation of carbon amounts
 - Account for land, labor, and capital carbon
 - Imperfect border tax adjustments
 - Distributional consumer impacts
- Framework improvements
 - Public and private learning
 - Research and development
 - Capital and product vintages
 - Overlapping consumer generations
 - Household production functions
 - Nonseparable utility functions
 - Heterogeneous beliefs

