Give credit where credit is due: Tracing value added in global production chains

Robert Koopman, William Powers and Zhi Wang
United States International Trade Commission

Shang-Jin Wei
Columbia University and NBER

October 15, 2010

The views expressed here are solely those of the presenter. This presentation is not meant to represent the views of the USITC or any of its individual Commissioners.
Presentation outline

• Global value chain: nature and measures
• Conceptual framework
 – Model setup and three important matrices
 – Major value-added components of gross exports
• Empirical results
 – Graphically show positions of countries in global value chains
• Database improvements and limitations
 – Extensions of the GTAP database
Contributions

• Conceptual framework
 – Unified
 • Incorporates all major measures in the literature
 • Vertical specialization and value-added trade
 – Complete
 • Decomposes gross exports into value-added components

• Empirical results
 – Informative:
 • Highlight each country’s upstream and downstream position
 • Caveat: Highlight differences but do not examine causes

• Database development
 – Improved measures of imported intermediate inputs and processing trade
Value chains, from a product view to a global view

• What is a global value chain?
 – A system of value-added sources and destinations within a globally integrated production network

• Literature
 – Asian regional chains: Pula and Peltonen (2009); Wang, Powers, and Wei (2009)
 – Global time series: Erumban et al. (2010); Wang et al. (2010)
Global value chains: Multiple measures

- Hummels, Ishii, and Yi (2001) measures of vertical trade
 - VS: share of imported inputs in exports
 - VS1: share of exports sent indirectly through third countries
- Newer measures
 - VAX: domestic value-added in exports (Johnson and Noguera, 2010):
 - VS1*: domestic value-added that returns home (Daudin et al., 2010)
- Not previously unified in a fully specified framework
Value chains in a two-country world:
Gross output

- All output is used as an intermediate or final good at home or abroad

\[X_r = A_{rr}X_r + A_{rs}X_s + Y_{rr} + Y_{rs} \]

with \(N \) goods,

- \(X_r \): \((N \times 1)\) Gross output of country \(r \)
- \(A_{rs} \): \((N \times N)\) IO Coefficient matrix giving use in country \(s \) of intermediates from \(r \)
- \(Y_{rs} \): \((N \times 1)\) Final demand: Country \(s \)'s use of final goods from country \(r \)
Production system in a two-country world

- In block matrix notation

\[
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} =
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} +
\begin{bmatrix}
Y_{11} + Y_{12} \\
Y_{21} + Y_{22}
\end{bmatrix}
\]

- Rearranging,

\[
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} =
\begin{bmatrix}
I - A_{11} & -A_{12} \\
-A_{21} & I - A_{22}
\end{bmatrix}^{-1}
\begin{bmatrix}
Y_{11} + Y_{12} \\
Y_{21} + Y_{22}
\end{bmatrix} =
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\begin{bmatrix}
Y_1 \\
Y_2
\end{bmatrix}
\]

where

- \(B_{sr}\): \((N \times N)\) block Leontief inverse matrix, denoting the amount of total output in \(s\) required for a one-unit increase in final demand in country \(r\)
- \(Y_r\): \((N \times 1)\) vector of global use of \(r\)'s final goods
Value added in production

- Direct domestic value added in production:
 \[V_1 = u[I - A_{11} - A_{21}] \quad \text{and} \quad V_2 = u[I - A_{12} - A_{22}] \]
 where
 \(V_r: (1 \times N) \) domestic value-added coefficient vector;
 element \(v_{ri} = 1 - \) intermediate input share from all countries
 \(u: (1 \times N) \) vector of ones

- **Value-added shares** matrix \((2 \times 2N)\)
 \[
 VAS = VB = \begin{bmatrix}
 V_1B_{11} & V_1B_{12} \\
 V_2B_{21} & V_2B_{22}
 \end{bmatrix}
 \]

 VAS decomposes the value added in production of each sector in all countries
Value-added exports

- Exports (N×1) include both intermediate and final goods

\[E_r = \sum_{s \neq r} E_{rs} = \sum_s (A_{rs}X_s + Y_{rs}) \]

- Use E (2N×2) to calculate national value-added exports

\[
E = \begin{bmatrix}
E_1 & 0 \\
0 & E_2
\end{bmatrix}
\]

(See paper for value-added exports at the product level)

- Value-added exports matrix (2×2)

\[
VASE = VBE = \begin{bmatrix}
V_1B_{11}E_1 & V_1B_{12}E_2 \\
V_2B_{21}E_1 & V_2B_{22}E_2
\end{bmatrix}
\]
Fully generalizable: Value added in many-country world

\[X = (I - A)^{-1} Y = BY \]

Production and trade system:

\[VAS = VB \]
\[VAS_E = VBE \]

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Description</th>
<th>Dimension</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Gross output</td>
<td>GN×1</td>
<td>G countries</td>
</tr>
<tr>
<td>Y</td>
<td>Final demand</td>
<td>GN×1</td>
<td>N sectors</td>
</tr>
<tr>
<td>A</td>
<td>IO coefficient</td>
<td>GN×GN</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Gross exports</td>
<td>GN×G</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Leontief inverse</td>
<td>GN×GN</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Direct value-added coefficient</td>
<td>G×GN</td>
<td></td>
</tr>
<tr>
<td>VAS</td>
<td>Value-added share</td>
<td>G×G</td>
<td></td>
</tr>
<tr>
<td>VAS_E</td>
<td>Value-added exports</td>
<td>G×G</td>
<td></td>
</tr>
</tbody>
</table>
VAS_E incorporates all value-added measures

- Diagonal elements: Domestic value added in exports
- Off-diagonal elements: Foreign value added in exports
- Each column sums to unity
- Characterizes both direct and indirect value-added exports

\[
\begin{align*}
\text{Indirect (VS1):} & \quad \text{Country 1’s value added embodied in 2’s and 3’s exports} \\
\text{Direct (VS):} & \quad \text{Foreign value added from 2 and 3 embodied in country 1’s exports}
\end{align*}
\]
Further decomposition of value-added exports

- Exports (N×1) include both intermediate and final goods
- Some intermediates are consumed in s; some are sent elsewhere

\[E_{rs} = Y_{rs} + A_{rs} X_{ss} + A_{rs} \sum_{s \neq t} X_{st} \]

(1)

- Final goods
- Finished in s
- Processed in s;
- Consumed in s consumed elsewhere

- DV measures the total domestic value-added embodied in r's exports

\[DV_r = V_r B_{rr} E_r \]

(2)

- Further decomposition of value-added exports: combine (1) and (2)
Complete decomposition of gross exports

Gross exports

- Domestic value added in exports (VAX)
- Domestic value added that returns from abroad (VS1*)
- Foreign value added in exports (VS)

Exports consumed by direct importer

- Final goods
- Intermediate inputs

Indirect exports sent to third countries

- Final goods
- Intermediate inputs

Final goods

Intermediate inputs

Indirect value-added exports (VS1)

Further downstream

Further upstream in GVCs
Decomposition of gross exports

- Advanced economies
- Emerging Asia
- Asia NICs
- Other emerging

Legend:
- Domestic VA
- Domestic VA returned
- Foreign VA
Domestic value-added components: Share of gross exports

Asia has less VA in intermed’s sent directly to consumer

Canada and Mexico too
Domestic value-added components: Share of domestic value added

Share of Value-added Exports

- Japan
- EU 15
- United States
- Australia, New Zealand
- Canada
- EFTA
- South Asia
- China
- Rest of East Asia
- Vietnam
- India
- Thailand
- Indonesia
- Philippines
- Malaysia
- Korea
- Hong Kong
- Taiwan
- EU accession countries
- Brazil
- Rest Latin America
- South Africa
- Mexico
- Rest of the world
- Russian Federation
- World average

- Final goods
- Intermed's absorbed by direct importer
- Intermed's reexported as intermediates
- Intermed's reexported as final goods
Intermediates and final goods, shares of domestic value-added exports

- Sum of distance to sides is same for all points in triangle
- Triangle can represent shares of each component in DVA exports

For example, final goods account for only 11% of Russia’s DVA exports, and intermediates absorbed by direct exporter account for 55% (reliance on energy exports)
Intermediates and final goods, shares of domestic value-added exports

- Colors indicate country grouping: Advanced (red), Asian emerging and NIC (blue), Other emerging (green)

- Emerging Asia differs markedly from other emerging countries
 - More final goods
 - Lower intermeds to direct consumer
Structure of value-added exports: VS1/VS

- Measures position in GVC
 - Ratio of indirect intermediates exports to foreign content of exports
 - Higher values: more upstream
 - Greater value sent indirectly
 - Less foreign value in imports
- Shows that Asia is different
- But has problems
 - Doesn’t distinguish raw material exporters from large developed countries
 - Not a perfect measure of integration: Both VS1 and VS are high for some countries
Sectoral VS1 to total VS ratios

- Clearly delineates type of indirect exports
- But are services really so similar to manufacturing across countries?
Domestic and foreign value-added shares of gross exports

- Mexico, EU accession, and emerging Asia are most tightly integrated into GVCs

- Exports by major advanced countries are predominantly domestic manufacturing and services value added

Domestic value: Raw materials

Domestic value: Manufacturing and services

Foreign value (including VS1*)
Database development: Estimating a global Inter-Region IO table

- Start with 2004 GTAP global trade and production database
- But, IRIO requires additional detail on source and use of intermediate inputs and final goods (elements of A_{rs})
- Add detail on processing imports for Mexico and China
- Use detailed trade data (HS 6-digit) to improve imported intermediate use coefficients
 - UN Broad economic classification (BEC) distinguishes intermediate inputs from final goods in imports from each source in each sector
 - Proportional method assumes the intermediate share in imports from each source is the same as in U.S. domestic supply
Why BEC is better than proportional assumption

Intermediates as a share of U.S. electronic machinery imports, 2004

Proportion method

- World (BEC)
- Rest of America
- Russian Federation
- South Africa
- REST OF THE WORLD
- EU 12
- Mexico
- Brazil
- South Asia
- India
- Philippines
- Rest of east asia
- Malaysia
- Indonesia
- China
- Thailand
- Viet Nam
- Taiwan
- Korea
- Hong Kong
- Canada
- EU 15
- Australia & New Zealand
- EFTA
- Japan

Share from US import use table (54.2%)
The role of end use classifications and their limitations

• End use classifications such as BEC can improve the accuracy of IO coefficients in IRIO table by giving better row total control for each block matrix in A.

• Proportionality assumptions must still be used to allocate intermediate inputs to each industry after they enter the importing country.
 – Industry-level estimates of value-added trade may be unreliable, despite their theoretical tractability
 – More reliable data collected by national agencies are needed to overcome this limitation.
Conclusions

• Big picture fairly complete
 – Can account for entirety of global gross exports
 – Can account for all value-added measures
 – See clear differences in regional integration
 • Asia > North America > Europe
• Next steps
 – Empirical analysis: determinants of differences
 – Better metrics of supply chain participation
 – Extension to sector-level analysis
 • Further estimation of imported intermediate use by sector
Value-added in imports and exports by source

Sources of value added in: Imports Exports

- Imports: Major advanced countries similar to each other and to Asia
- Exports: Major advanced countries similar to each other but not to NICs