Microsimulations and Macro-Micro Analysis

Jann Lay

Kiel Institute for the World Economy
Overview

1. Introduction

2. Microsimulation models
 - What is a microsimulation?
 - Micro-accounting models
 - Behavioral microsimulations
 - Dynamic microsimulations

3. Macro-micro models
 - Why, what, and when?
 - “Sequential” macro-micro models
 - “Fully-integrated” macro-micro models
Distributional and poverty impact analysis: Counterfactual macro models

- CGE models
- Rely on representative agents
- Ex-post (decomposition of shocks) and ex-ante analysis
- Examples
 - Trade policy
 - Resource (aid) booms and Dutch Disease
 - Pension and tax reforms
Distributitional and poverty impact analysis: Micro approaches

- Analysis of micro databases
 - household surveys
 - tax and social security records
- Using a wide range of techniques
 - Descriptive
 - Econometric
 - Simulation
- Use of information on individuals or households
- Typically ex-post, some ex-ante applications
Classes of micro approaches

• Applications and examples
 a) Treatment effects, Comparison of treated and non-treated groups
 - E.g. IFPRI evaluation of PROGRESA/OPORTUNIDADES
 b) Incidence analysis
 - Public incidence analysis (benefit and tax incidence)
 - Incidence of price reforms
 - Rather descriptive techniques
 c) Microsimulation models
Microsimulation models
What is a microsimulation?

• A microsimulation is a model based on a dataset that contains information on individual microeconomic agents (individuals, households, firms)

• Allows to simulate the effect of policies on individuals

• Typical: Household survey data with information on
 - Socio-economic characteristics of each individual
 - Employment status and corresponding income
 - Household expenditure
Schematic representation of a microsimulation

Micro dataset
- Income from food crops (and home production)
- Income from tea
- Household composition

Initial income distribution

Simulation of socio-economic processes
- Tea price falls
- Food prices rise
- Household size increases

Counterfactual income distribution with
- Food income
- Tea income
- Household size

Counterfactual poverty indicators
- e.g. Poverty headcount 45 %

Poverty indicators
- e.g. Poverty headcount 35 %
Microsimulation models for developing countries

• Most microsimulation models for high-income countries
 - Date back to the 1960s
 - Focus on incidence of tax and social policies
 - Examples: STINMOD (Australia), DYNACAN (Canada), Euromod (EU) etc.

• Microsimulation models for developing countries
 - Relatively recent
 - Focus on income generation (labor market)
 - Applied not only to public policy
 - No need for “multi-purpose” tax and transfer models
Classes of microsimulation models

- Micro-accounting (arithmetical) models
 - Capture 1st order effects
 - No behavioral response of microeconomic agent

- Behavioral models
 - Capture 2nd order effects
 - Microeconomic agents change behavior in response to price changes
 - Can be “reduced-form” or “structural”

- “Dynamic” vs. “static” models
 - Typically: “dynamic” = Time dimension, “aging” of information
 - Sometimes: “behavioral” = “dynamic”
Micro-accounting models: Theoretical foundation

- Basis of every microsimulation: reference distribution computed from survey data

- To provide a simple formal framework:
 - Indirect utility of household i: $V_i(p, y_i) = U[x^M(p, y_i)]$
 - Effect of a marginal change in income: $\Delta V_i = V_y^i \Delta y_i$
 - "Equivalent" variation of income: $\Delta y_i^* = \Delta V_i / V_y^i$

- Complete equivalence between welfare change and change in income metric (once marginal utility of income has been set)
Impact of a price change

- Policy change that affects prices
 \[\Delta V_i = \sum_j V_{ij} \Delta p_j \]

- Shepard’s lemma
 \[V_j = -V_y^i x_j^M (p, y_i) \]

- Using
 \[\Delta y_i^* = \Delta V_i / V_y^i \]

- Gives
 \[\Delta y_i^* = -\sum_j x_j^i \Delta p_j \]

- Change in welfare income metric due to price change equal to change in cost of consumption basket
Implications

- Theoretical “justification” of the micro-accounting approach
- Can be generalized
 - “consumption” of labor or other factors
 - households being a net suppliers of goods
- Note: Consistent with existence of changes in behavior
- Message: Behavioral change can be ignored at the margin
Micro-accounting in practice

1. Prepare the dataset, e.g.
 - Composition of household income
 - Unskilled/skilled labor income
 - Capital income
 - Land income
 - Taxes, transfers, and subsidies
 - Consumption patterns

2. Perform an experiment, e.g. increase in a specific transfer by 10 percent and/or decrease in food prices by 10 percent

3. Compare initial and counterfactual income distributions
Some applications

- Many tax and social security microsimulation models have micro-accounting features
 - EUROMOD, STINMOD

- Tax and social policy changes, e.g.
 - Atkinson, Bourguignon, Chiappori (1988): Comparison of incidence of European tax and benefit systems

- Developing country applications, e.g.
 - McCulloch (2003): The impact of structural reforms on poverty

- Some macro-micro applications (example and further applications later)
Micro-accounting

• Advantages
 - Account for household heterogeneity (factor endowments, taxes and transfers, and consumption patterns)
 - Analysis of policy-relevant correlates from survey information, e.g. regions where certain types of households are concentrated
 - Relatively easy to implement

• Disadvantages
 - Not adequate for non-marginal changes
 - Typically, households’ factor endowments fixed – only the returns change (labor supply!)
Behavioral models

- Households respond to changes in prices/endowments
- Non-marginal effects
- Types of responses
 - Consumption: Quantity changes
 - Labor market
 - Labor supply
 - Occupational/sectoral choices (formal vs. informal)
 - Migration
 - Demographic behavior: Fertility and mortality
 - Education: Schooling choices
- Operationalization: Estimation of econometric model or calibration (or both)
Reduced form vs. structural econometric models

- Reduced form
 - Ad-hoc specification: Put all relevant variables on the right hand side (rhs) of the equation

- Structural model
 - Specific functional form to be estimated

- Example: Rural-urban migration
 - Direct and “earnings potential” effect of education
 - Structural model: Rural-urban earnings differential on rhs
 - Estimate two coefficients
 - the coefficient of earnings differences between rural an urban areas and another one for the direct effect
 - Reduced form model: Just education on the rhs

- Structural models: Identification problems
Behavioral models in practice

1. Prepare the database
2. Specify the logical economic structure of the model
3. Estimate (or calibrate) the behavioral relationships, e.g.
 - Occupational choice model (inactive – informal – formal)
4. Perform experiment, e.g.
 - 10 % decrease of formal employment
5. Compare initial and counterfactual income distributions
Example: Income generation model for Bolivia

1. Logic structure of the model: Make occupational choices (formal vs. informal employment) and earn wages/profits accordingly
2. Estimated model:
 - Component I: Choice model formal vs. informal employment
 - Estimated separately for heads, spouses, and others using logit
 - Component II: Income equations
 - Unskilled/skilled (formal) wages
 - Informal profits
Example of estimation results: Income equations

<table>
<thead>
<tr>
<th></th>
<th>log unskilled</th>
<th>log skilled wage</th>
<th>informal profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>education</td>
<td>0.084</td>
<td>0.152</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>(9.16)**</td>
<td>(13.53)**</td>
<td>(8.64)**</td>
</tr>
<tr>
<td>exp</td>
<td>0.051</td>
<td>0.057</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>(11.20)**</td>
<td>(7.96)**</td>
<td>(8.44)**</td>
</tr>
<tr>
<td>exp2</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(9.54)**</td>
<td>(4.72)**</td>
<td>(8.20)**</td>
</tr>
</tbody>
</table>

Robust t statistics in parentheses

* significant at 5%; ** significant at 1%
A flavor of simulation results

<table>
<thead>
<tr>
<th></th>
<th>P0</th>
<th>P1</th>
<th>Theil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>50.8</td>
<td>23.5</td>
<td>63.3</td>
</tr>
<tr>
<td>Point change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% point decline in formal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>share unskilled</td>
<td>0.7</td>
<td>0.5</td>
<td>-1.2</td>
</tr>
<tr>
<td>5% point decline in formal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>share skilled</td>
<td>1.7</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>10% increase unskilled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wages</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-1.1</td>
</tr>
<tr>
<td>10% increase skilled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wages</td>
<td>-0.7</td>
<td>-0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>10% increase in informal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>profits</td>
<td>-1.6</td>
<td>-1.1</td>
<td>-1.3</td>
</tr>
</tbody>
</table>
Some applications

• Tax and benefit reforms
 - With focus on labor supply response
 - E.g. Blundell et. al (2000): Impact of working families tax credit
 - Numerous studies on indirect tax reforms with focus on consumption responses (based on estimated demand systems)

• Developing country applications, e.g.
 - Ferreira and Leite (2002): Distributional effects of educational expansion in Brazil
 - Bourguignon, Ferreira, Leite (2003): Distributional and poverty effects of Bolsa Escola

• Some macro-micro applications (later)
Problems and disadvantages of behavioral microsimulations

- Models require substantial investment
 - No "multi-purpose" microsimulation model
 - In some instances, micro-accounting methods may be more practical

- Models based on estimated relationship: Lucas critique applies and should be taken serious
 - Non-marginal changes
 - Long time spans
Problems and disadvantages of behavioral microsimulations

• Assumption 1: Time effect = Cross-sectional effect
 - Models estimated on cross-sections, but simulations dynamic

• Assumption 2: Transition modeled based on state comparisons
 - Choice models often based on state comparisons (informal vs. formal) ... not necessarily appropriate to model transition (from informal to formal)

• Labor supply models and Roy-type income generation model possibly inappropriate for rural settings
 - Lack of markets
 - Income diversification
 - Cumulative dynamics
Dynamic microsimulations

- Add a time dimension, “aging” of information
- Model changes in demo-economic behavior and demographic processes
 - Age structure
 - Human capital accumulation
- Typically based on various data sources
 - Standard household surveys
 - Demographic and health surveys
 - Census information
 - Population projections
- May have behavioral and “accounting” components
- Can be combined with income generation models
Dynamic microsimulations in practice

1. Prepare and combine datasets
2. Define procedures to “age” information
 - Specify and estimate behavioral relationships
 - Introduce “static” procedures, e.g. reweighting of household weights
3. Validation
4. Perform experiments
5. Compare initial and counterfactual income distributions
Example: Dynamic microsimulation for Côte d’Ivoire

- Dynamic microsimulation model for Côte d’Ivoire
- For each year of a period of 15-25 years, the model produces income distributions
- Model simulates on individual level
 - Fertility
 - Marriage
 - Household formation
 - Mortality
 - Migration
 - School enrollment of children
 - Labor supply and earnings
- Validated on historical data
A flavor of simulation results

- Dynamic microsimulation used to analyse economic impact of educational policies – Grimm (2005)
- A flavor of results: Only reforms that include a huge adult literacy program focused on women and the rural population will dramatically reduce illiteracy
- Growth effects of such a program
 - Growth gain (obviously) depends on the changes in the returns to education
 - 0.3 point gain if returns to education are constant
 - -0.9 point loss if returns decrease
 - 1.8 point gain if returns increase
 - Growth gains are 0 if informal sector share remains constant
Some applications

- Several dynamic microsimulation models for tax and social policy analysis for developed economies
- To my knowledge: Except for Cogneau and Grimm (2002) and Grimm (2005) none in developing countries
Problems of dynamic microsimulations

• Projection of long-term demo-economic developments without modeling “growth”
 - Structural change
 - Interaction between growth and endowments (e.g. changes in educational endowments not exogenous)

• The “constant parameter” assumption may be even more problematic
 - Model parameters are often estimated from cross-sectional data

• Lack of focus
 - Possibly overambitious to aim at an empirical model of socio-economic change in all its facets
Macro-micro models
Why combine macro and micro tools?

• Account for heterogeneity
 - MACRO models ... use representative agents and fail to account for intra-group inequality
 - MICRO models ... take into account the full heterogeneity of the population

• Capture non-linearities
 - MACRO models ... have difficulties to capture non-linearities of individual behaviour
 - MICRO models ... can easily model discrete choices on individual level
Why combine macro and micro tools?

- Model transmission channels and perform counterfactual analysis
 - MICRO models ... are typically reduced form and therefore difficult to use for counterfactual analyses
 - MACRO (CGE) models ... model transmission channels explicitly

- More solid database
 - Reconciliation of national accounts and household survey data
 - Informing macro data by micro sources and vice versa (SAM construction)
What a macro-micro model captures?

- **Macro level**: General equilibrium effects
 - Macroeconomic constraints

- **Factor markets**: Changes in factor prices
 - Segmentation
 - Resource endowments

- **Goods markets**: Changes in goods prices
 - Segmentation
 - Price setting

- **Household/individual level**: Heterogeneity
 - Human/physical capital, land endowments
 - Demographic composition
 - Preferences
 - Market access
When to apply macro-micro models?

- Poverty and distributional impact analysis when external shocks/macro policy changes and social (micro) processes and micro policy changes are expected to have general equilibrium effect.
 - Commodity price shocks, resource booms
 - Huge aid inflows (Scaling up ODA!)
 - Droughts

- External shocks / macro policy changes
 - Commodity price shocks, resource booms
 - Huge aid inflows (Scaling up ODA!)
 - Droughts

- Social (micro) processes and micro policy changes
 - Demographic transition
 - Expansion of education
 - HIV-AIDS
 - Large-scale cash-transfer programs
Classes of Macro-micro models

1. Without feedback from the microsimulation to the macro model (sequential model)
 a) With micro-accounting micro module
 b) With behavioral micro module

2. With feedback (integrated model)
 - Requires a “structural” microsimulation (why?)
Schematic representation of a sequential macro-micro model

Macro model
- Macro Accounting (RMSM-X), CGE (123), Econometric

Linkage aggregate variables
- Factor prices
- Goods prices
- Employment changes

Microsimulation
- Microaccounting
- Behavioral microsimulation
A CGE plus micro-accounting model for Latin America

- Global CGE-model used to simulate different trade liberalization scenarios for Latin America
- Micro-accounting models for
 - Brazil
 - Chile
 - Colombia
 - Mexico
- Link variables
 - Urban and rural wage rates for skilled and unskilled
 - Urban capital rental rate
 - Rural composite capital+land remunerations
 - Food prices
 - Non-Food prices
 - Real per capita income
Initial data inconsistencies: factor shares in SAM’s value added and household incomes
Factor shares by per capita income percentiles:

- Brazil
- Mexico
- Colombia
- Chile
A flavor of results: Headcount-growth elasticities under different lib scenarios

<table>
<thead>
<tr>
<th>Country</th>
<th>FTAA Full Dist</th>
<th>FTAA FullLib</th>
<th>Dist Neutral growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>-1.0</td>
<td>-1.2</td>
<td>-1.0</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.3</td>
<td>-1.2</td>
<td>-3.5</td>
</tr>
<tr>
<td>Colombia</td>
<td>-0.9</td>
<td>-0.6</td>
<td>-0.8</td>
</tr>
<tr>
<td>Chile</td>
<td>-1.8</td>
<td>-1.8</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Further applications

- More applications on developing countries
 - Chen and Ravallion (2003). Impact of China’s WTO accession on household welfare
 - Friedman and Levinsohn (2002): Impact of Indonesian crisis on poverty
A CGE plus behavioural micro model for Brazil

- Macro model: Standard recursive dynamic CGE-model
- Labor market: Unskilled and skilled
 - Unskilled labor imperfectly mobile between agricultural and non-agricultural sectors
 - Skilled labor perfectly mobile
 - Segmentation assumptions supported by econometric evidence
- Imperfect mobility of unskilled labor modeled by very simple function

\[
MIGR_l = \chi_l^m \left(\frac{AWAGE_{Nagri,l}}{AWAGE_{Agri,l}} \right)^{\omega_l^m} - 1
\]
The link between the macro and the micro model

- Link variables (endogenously determined in the CGE):
 - Factor prices for agricultural and non-agricultural labor
 - Factor prices for skilled labor
 - Sectoral (agriculture vs. non-agriculture) composition of the unskilled workforce
- In addition, we simulate that unskilled and skilled labor supplies grow at different rates
- The microsimulation is “forced” to reproduce the changes in the link variables given by the CGE
- On the microlevel we take into account the cumulative changes between 2001 and 2015
 - Simulation of one counterfactual cross-section
Components of the microsimulation

1. Reweighting procedure to account for changes in the skill composition of the workforce

2. Mover-stayer model that explains the choice of moving out of agriculture or staying there
 - Used later to simulate WHO moves out of agriculture
 - Estimated separately for household heads and non-heads (logit)
 - Uses data from “employment history” of the PNAD

\[
Pr(ob(move_{msh} = 1 \mid X_{msh})_{msh} = F(\alpha_{msh} + X_{msh} \beta_{msh} + \varepsilon_{msh})
\]

3. Earnings equations
 - Used later to simulate new incomes
 - Estimated using Ordinary Least Squares

\[
\ln w_{uagr} = \alpha_{uagr} + X_{uagr} \beta_{uagr} + uw_{uagr}
\]
How the simulation works

1. Reweighting to account for the change in the skilled/unskilled labor ratio

2. Unskilled labor moves out of agriculture until the new share of unskilled labor in agriculture given by the CGE is reproduced

3. Wages/profits are adjusted according to the CGE results taking into account
 - the changes in the skill composition
 - the sectoral movements of unskilled labor from agriculture into non-agricultural sectors
What kind of behaviour is modelled?

- Determinants of the choice to move or not

<table>
<thead>
<tr>
<th></th>
<th>Heads</th>
<th>Non-heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Education</td>
<td>Education</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Head’s choice</td>
</tr>
<tr>
<td>Negative</td>
<td>Age</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td>Landowner</td>
<td>Non-remunerated Landowner</td>
</tr>
<tr>
<td></td>
<td>Livestock owner</td>
<td>Livestock owner</td>
</tr>
</tbody>
</table>
Some results:
What is passed to the microsimulation in a Business as Usual (BaU) scenario

- Exogenous (also in the CGE) assumption on changes in skill composition:
 - Growth of skilled labor 2.0% annually
 - Growth of unskilled labor 1.6% annually

- Variables determined in the CGE
 1. Labor demand in agriculture stagnates
 - Employment in agriculture declines by 5 % points
 2. Annual real wage growth rates:
 - Unskilled in agriculture: 1.7 %
 - Unskilled in non-agriculture: 0.9 %
 - Skilled: 1.3 %
Micro results BaU

<table>
<thead>
<tr>
<th></th>
<th>All households</th>
<th>Non-agricultural households</th>
<th>Agricultural households</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>level</td>
<td>change</td>
<td>level</td>
</tr>
<tr>
<td>PC income</td>
<td>314.9</td>
<td>1.5</td>
<td>351.9</td>
</tr>
<tr>
<td>Gini</td>
<td>58.6</td>
<td>-0.1</td>
<td>57.1</td>
</tr>
<tr>
<td>P0</td>
<td>23.6</td>
<td>-5.6</td>
<td>18.6</td>
</tr>
<tr>
<td>P1</td>
<td>9.6</td>
<td>-3.0</td>
<td>7.1</td>
</tr>
<tr>
<td>P2</td>
<td>5.3</td>
<td>-1.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Population %</td>
<td>100</td>
<td></td>
<td>81.8</td>
</tr>
<tr>
<td>Contr. to P0</td>
<td></td>
<td></td>
<td>64.4</td>
</tr>
</tbody>
</table>
Further applications

- Robilliard, Bourguignon, Robinson (2001): Poverty and distributional impact of the Indonesian crisis
- Bussolo, Lay (2003): Poverty impacts of trade liberalization in Colombia
Integrated macro-micro models

- Fully integrate behavioral microsimulations into an economy-wide modelling framework
- Several attempts, different approaches
 - Cogneau and Robilliard (2006)
 - Madagascar, poverty alleviation programs
 - Complex income generation model, less sophisticated macro model
 - Rutherford, Shepotylo, Tarr (2004)
 - Russia, poverty effects of WTO accession
 - Increase the number of “representative households” to 50000
- Field for future research despite (or because of) the many difficulties involved