

Microsimulations and Macro-Micro Analysis

Jann Lay

Kiel Institute for the World Economy

Overview

- 1. Introduction
- 2. Microsimulation models
 - What is a microsimulation?
 - Micro-accounting models
 - Behavioral microsimulations
 - Dynamic microsimulations
- 3. Macro-micro models
 - Why, what, and when?
 - "Sequential" macro-micro models
 - "Fully-integrated" macro-micro models

Distributional and poverty impact analysis: Counterfactual macro models

- CGE models
- Rely on representative agents
- Ex-post (decomposition of shocks) and ex-ante analysis
- Examples
 - Trade policy
 - Resource (aid) booms and Dutch Disease
 - Pension and tax reforms

IfW

Ditributional and poverty impact analysis: Micro approaches

- Analysis of micro databases
 - household surveys
 - tax and social security records
- Using a wide range of techniques
 - Descriptive
 - Econonmetric
 - Simulation
- Use of information on individuals or households
- Typically ex-post, some ex-ante applications

Classes of micro approaches

- Applications and examples
- a) Treatment effects, Comparison of treated and nontreated groups
 - E.g. IFPRI evaluation of PROGRESA/OPORTUNIDADES
- b) Incidence analysis
 - Public incidence analysis (benefit and tax incidence)
 - Incidence of price reforms
 - Rather descriptive techniques
- c) Microsimulation models

Microsimulation models

What is a microsimulation?

- A microsimulation is a model based on a dataset that contains information on individual microeconomic agents (individuals, households, firms)
- Allows to simulate the effect of policies on individuals
- Typical: Household survey data with information on
 - Socio-economic characteristics of each individual
 - Employment status and corresponding income
 - Household expenditure

Schematic representation of a microsimulation

Microsimulation models for developing countries

- Most microsimulation models for high-income countries
 - Date back to the 1960s
 - Focus on incidence of tax and social policies
 - Examples: STINMOD (Australia), DYNACAN (Canada), Euromod (EU) etc.
- Microsimulation models for developing countries
 - Relatively recent
 - Focus on income generation (labor market)
 - Applied not only to public policy
 - No need for "multi-purpose" tax and transfer models

Classes of microsimulation models

- Micro-accounting (arithmetical) models
 - Capture 1st order effects
 - No behavioral response of microeconomic agent
- Behavioral models
 - Capture 2nd order effects
 - Microeconomic agents change behavior in response to price changes
 - Can be "reduced-form" or "structural"
- "Dynamic" vs. "static" models
 - Typically: "dynamic" = Time dimension, "aging" of information
 - Sometimes: "behavioral" = "dynamic"

Micro-accounting models: Theoretical foundation

- Basis of every microsimulation: reference distribution computed from survey data
- To provide a simple formal framework:
 - Indirect utility of household i $V_i(p, y_i) = U[x^M(p, y_i)]$
 - Effect of a marginal change in income $\Delta V_i = V_v^i \Delta y_i$
 - "Equivalent" variation of income $\Delta y^{*}_{i} = \Delta V_{i} \, / \, V^{i}_{y}$
- Complete equivalence between welfare change and change in income metric (once marginal utility of income has been set)

Impact of a price change

• Policy change that affects prices $\Delta V_i = \sum_i V_{ij} \Delta p_j$

• Shepard's lemma $V_j = -V_y^i x_j^M(p, y_i)$

• Using
$$\Delta y_i^* = \Delta V_i / V_y^i$$

• Gives
$$\Delta y_i^* = -\sum_j x_j^i \Delta p_j$$

Change in welfare income metric due to price change equal to change in cost of consumption basket

Implications

- Theoretical "justification" of the micro-accounting approach
- Can be generalized
 - "consumption" of labor or other factors
 - households being a net suppliers of goods
- Note: Consistent with existence of changes in behavior
- Message: Behavioral change can be ignored at the margin

Micro-accounting in practice

- 1. Prepare the dataset, e.g.
 - Composition of household income
 - Unskilled/skilled labor income
 - Capital income
 - Land income
 - Taxes, transfers, and subsidies
 - Consumption patterns
- Perform an experiment, e.g. increase in a specific transfer by 10 percent and/or decrease in food prices by 10 percent
- 3. Compare initial and counterfactual income distributions

Some applications

- Many tax and social security microsimulation models have micro-accounting features
 - EUROMOD, STINMOD
- Tax and social policy changes, e.g.
 - Atkinson, Bourguignon, Chiappori (1988): Comparison of incidence of European tax and benefit systems
- Developing country applications, e.g.
 - McCulloch (2003): The impact of structural reforms on poverty
- Some macro-micro applications (example and further applications later)

Micro-accounting

- Advantages
 - Account for household heterogeneity (factor endowments, taxes and transfers, and consumption patterns)
 - Analysis of policy-relevant correlates from survey information, e.g. regions where certain types of households are concentrated
 - Relatively easy to implement
- Disadvantages
 - Not adequate for non-marginal changes
 - Typically, households' factor endowments fixed only the returns change (labor supply!)

Behavioral models

- Households respond to changes in prices/endowments
- Non-marginal effects
- Types of responses
 - Consumption: Quantity changes
 - Labor market
 - Labor supply
 - Occupational/sectoral choices (formal vs. informal)
 - Migration
 - Demographic behavior: Fertility and mortality
 - Education: Schooling choices
- Operationalization: Estimation of econometric model or calibration (or both)

Reduced form vs. structural econometric models

- Reduced form
 - Ad-hoc specification: Put all relevant variables on the right hand side (rhs) of the equation
- Structural model
 - Specific functional form to be estimated
- Example: Rural-urban migration
 - Direct and "earnings potential" effect of education
 - Structural model: Rural-urban earnings differential on rhs
 - Estimate two coefficients
 - the coefficient of earnings differences between rural an urban areas and another one for the direct effect
 - Reduced form model: Just education on the rhs
- Structural models: Identification problems

Behavioral models in practice

- 1. Prepare the database
- 2. Specify the logical economic structure of the model
- 3. Estimate (or calibrate) the behavioral relationships, e.g.
 - Occupational choice model (inactive informal formal)
- 4. Perform experiment, e.g.
 - 10 % decrease of formal employment
- 5. Compare initial and counterfactual income distributions

Example: Income generation model for Bolivia

- Logic structure of the model: Make occupational choices (formal vs. informal employment) and earn wages/profits accordingly
- 2. Estimated model:
- Component I: Choice model formal vs. informal employment
 - Estimated separately for heads, spouses, and others using logit
- Component II: Income equations
 - Unskilled/skilled (formal) wages
 - Informal profits

Example of estimation results: Income equations

	log	log skilled	informal
	unskilled	wage	profits
education	0.084	0.152	0.059
	(9.16)**	(13.53)**	(8.64)**
ovo	0.051	0.057	0.038
exp	(11.20)**	(7.96)**	(8.44)**
exp2	-0.001	-0.001	-0.001
	(9.54)**	(4.72)**	(8.20)**

Robust t statistics in parentheses * significant at 5%; ** significant at 1%

A flavor of simulation results

	P0	P1	Theil
Initial	50.8	23.5	63.3
	Point change		
5 % point decline in formal			
share unskilled	0.7	0.5	-1.2
5% point decline in formal			
share skilled	1.7	0.9	1.2
10 % increase unskilled			
wages	-0.9	-0.7	-1.1
10 % increase skilled			
wages	-0.7	-0.4	2.4
10 % increase in informal			
profits	-1.6	-1.1	-1.3

Some applications

- Tax and benefit reforms
 - With focus on labor supply response
 - E.g. Blundell et. al (2000): Impact of working families tax credit
 - Numerous studies on indirect tax reforms with focus on consumption responses (based on estimated demand systems)
- Developing country applications, e.g.
 - Ferreira and Leite (2002): Distributional effects of educational expansion in Brazil
 - Bourguignon, Ferreira, Leite (2003): Distributional and poverty effects of Bolsa Escola
- Some macro-micro applications (later)

Problems and disadvantages of behavioral microsimulations

- Models require substantial investment
 - No "multi-purpose" microsimulation model
 - In some instances, micro-accounting methods may be more practical
- Models based on estimated relationship: Lucas critique applies and should be taken serious
 - Non-marginal changes
 - Long time spans

Problems and disadvantages of behavioral microsimulations

- Assumption 1: Time effect = Cross-sectional effect
 - Models estimated on cross-sections, but simulations dynamic
- Assumption 2: Transition modeled based on state comparisons
 - Choice models often based on state comparisons (informal vs. formal) ... not necessarily appropriate to model transition (from informal to formal)
- Labor supply models and Roy-type income generation model possibly inappropriate for rural settings
 - Lack of markets
 - Income diversification
 - Cumulative dynamics

Dynamic microsimulations

- Add a time dimension, "aging" of information
- Model changes in demo-economic behavior and demographic processes
 - Age structure
 - Human capital accumulation
- Typically based on various data sources
 - Standard household surveys
 - Demographic and health surveys
 - Census information
 - Population projections
- May have behavioral and "accounting" components
- Can be combined with income generation models

Dynamic microsimulations in practice

- 1. Prepare and combine datasets
- 2. Define procedures to "age" information
 - Specify and estimate behavioral relationships
 - Introduce "static" procedures, e.g. reweighting of household weights
- 3. Validation
- 4. Perform experiments
- 5. Compare initial and counterfactual income distributions

Example: Dynamic microsimulation for Côte d'Ivoire

- Dynamic microsimulation model for Côte d'Ivoire
- For each year of a period of 15-25 years, the model produces income distributions
- Model simulates on individual level
 - Fertility
 - Marriage
 - Household formation
 - Mortality
 - Migration
 - School enrollment of children
 - Labor supply and earnings
- Validated on historical data

A flavor of simulation results

- Dynamic microsimulation used to analyse economic impact of educational policies Grimm (2005)
- A flavor of results: Only reforms that include a huge adult literacy program focused on women and the rural population will dramatically reduce illiteracy
- Growth effects of such a program
 - Growth gain (obviously) depends on the changes in the returns to education
 - 0.3 point gain if returns to education are constant
 - -0.9 point loss if returns decrease
 - 1.8 point gain if returns increase
 - Growth gains are 0 if informal sector share remains constant

Some applications

- Several dynamic microsimulation models for tax and social policy analysis for developed economies
- To my knowledge: Except for Cogneau and Grimm (2002) and Grimm (2005) none in developing countries

Problems of dynamic microsimulations

- Projection of long-term demo-economic developments without modeling "growth"
 - Structural change
 - Interaction between growth and endowments (e.g. changes in educational endowments not exogenous)
- The "constant parameter" assumption may be even more problematic
 - Model parameters are often estimated from cross-sectional data
- Lack of focus
 - Possibly overambitious to aim at an empirical model of socio-economic change in all its facets

Macro-micro models

Why combine macro and micro tools?

- Account for heterogeniety
 - MACRO models ... use representative agents and fail to account for intra-group inequality
 - MICRO models ...take into account the full heterogeniety of the poplulation
- Capture non-linearities
 - MACRO models ... have difficulties to capture non-linearities of individual behaviour
 - MICRO models ... can easily model discrete choices on individual level

Why combine macro and micro tools?

- Model transmission channels and perform counterfactual analysis
 - MICRO models ... are typically reduced form and therefore difficult to use for counterfactual analyses
 - MACRO (CGE) models ... model transmission channels explicitly
- More solid database
 - Reconciliation of national accounts and household survey data
 - Informing macro data by micro sources and vice versa (SAM construction)

What a macro-micro model captures?

- Macro level: General equilibrium effects
 - Macroeconomic constraints
- Factor markets: Changes in factor prices
 - Segmentation
 - Resource endowments

- Goods markets: Changes in goods prices
 - Segmentation
 - Price setting
- Household/individual level: Heterogeneity
 - Human/physical capital, land endowments
 - Demographic composition
 - Preferences
 - Market access

When to apply macro-micro models?

- Poverty and distributional impact analysis when
 - external shocks/macro policy changes
 - social (micro) processes and micro policy changes are expected to have general equilibrium effect
- External shocks / macro policy changes
 - Commodity price shocks, resource booms
 - Huge aid inflows (Scaling up ODA!)
 - Droughts
- Social (micro) processes and micro policy changes
 - Demographic transition
 - Expansion of education
 - HIV-AIDS
 - Large-scale cash-transfer programs

Classes of Macro-micro models

- 1. Without feedback from the microsimulation to the macro model (sequential model)
 - a) With micro-accounting micro module
 - b) With behavioral micro module
- 2. With feedback (integrated model)
 - Requires a "structural" microsimulation (why?)

A CGE plus micro-accounting model for Latin America

- Global CGE-model used to simulate different trade liberalization scenarios for Latin America
- Micro-accounting models for
 - Brazil
 - Chile
 - Colombia
 - Mexico
- Link variables
 - Urban and rural wage rates for skilled and unskilled
 - Urban capital rental rate
 - Rural composite capital+land remunerations
 - Food prices
 - Non-Food prices
 - Real per capita income

Initial data inconsistencies: factor shares in SAM's value added and household incomes

IfW Factor shares by per capita income percentiles:

A flavor of results: Headcount-growth elasticities under different lib scenarios

		Dist Neutral Full Dist growth		
Brazil	FTAA	-1.0	-1.0	
	FullLib	-1.2		
Mexico	FTAA	0.3	25	
	FullLib	-1.2	-3.5	
Colombia	FTAA	-0.9	-0.8	
	FullLib	-0.6		
Chile	FTAA	-1.8	-1.7	
	FullLib	-1.8	-1.7	

Further applications

- More applications on developing countries
 - Chen and Ravalllion (2003). Impact of China's WTO accession on household welfare
 - Friedman and Levinsohn (2002): Impact of Indonesian crisis on poverty

A CGE plus behavioural micro model for Brazil

- Macro model: Standard recursive dynamic CGE-model
- Labor market: Unskilled and skilled
 - Unskilled labor imperfectly mobile between agricultural and non-agricultural sectors
 - Skilled labor perfectly mobile
 - Segmentation assumptions supported by econometric evidence
- Imperfect mobility of unskilled labor modeled by very simple function

$$MIGR_{l} = \chi_{l}^{m} \left[\left(\frac{AWAGE_{Nagri,l}}{AWAGE_{Agri,l}} \right)^{\omega_{l}^{m}} - 1 \right]$$

The link between the macro and the micro model

- Link variables (endogenously determined in the CGE):
 - Factor prices for agricultural and non-agricultural labor
 - Factor prices for skilled labor
 - Sectoral (agriculture vs. non-agriculture) composition of the unskilled workforce
- In addition, we simulate that unskilled and skilled labor supplies grow at different rates
- The microsimulation is "forced" to reproduce the changes in the link variables given by the CGE
- On the microlevel we take into account the cumulative changes between 2001 and 2015
 - Simulation of one counterfactual cross-section

Components of the microsimulation

- 1. Reweighting procedure to account for changes in the skill composition of the workforce
- 2. Mover-stayer model that explains the choice of *moving out* of agriculture or *staying* there
 - Used later to simulate WHO moves out of agriculture
 - Estimated separately for household heads and non-heads (logit)
 - Uses data from "employment history" of the PNAD

 $\operatorname{Pr}ob(move_{msh} = 1 | X_{msh})_{msh} = F(\alpha_{msh} + X_{msh}\beta_{msh} + \varepsilon_{msh})$

- 3. Earnings equations
 - Used later to simulate new incomes
 - Estimated using Ordinary Least Squares

$$\ln w_{uagr} = \alpha_{uagr} + X_{uagr} \beta_{uagr} + u w_{uagr}$$

How the simulation works

- 1. Reweighting to account for the change in the skilled/unskilled labor ratio
- 2. Unskilled labor moves out of agriculture until the new share of unskilled labor in agriculture given by the CGE is reproduced
- 3. Wages/profits are adjusted according to the CGE results taking into account
 - the changes in the skill composition
 - the sectoral movements of unskilled labor from agriculture into non-agricultural sectors

What kind of behaviour is modelled?

• Determinants of the choice to move or not

	• Heads	 Non-heads
Positive	Education	Education Head's choice
Negative	Age Landowner Livestock owner	Age Non-remunerated Landowner Livestock owner

Some results: What is passed to the microsimulation in a Business as Usual (BaU) scenario

- Exogenous (also in the CGE) assumption on changes in skill composition:
 - Growth of skilled labor 2.0% annually
 - Growth of unskilled labor 1.6% annually
- Variables determined in the CGE
- 1. Labor demand in agriculture stagnates
 - Employment in agriculture declines by 5 % points
- 2. Annual real wage growth rates:
 - Unskilled in agriculture: 1.7 %
 - Unskilled in non-agriculture: 0.9 %
 - Skilled: 1.3 %

Micro results BaU

	All households		Non-agricultural		Agricultural		
	_			households		households	
	2001	2001-15	2001	2001-15	2001	2001-15	
	level	change	level	change	level	change	
PC income	314.9	1.5	351.9	1.2	148.3	2.3	
Gini	58.6	-0.1	57.1	0.6	56.6	-0.7	
P0	23.6	-5.6	18.6	-3.1	46.2	-13.8	
P1	9.6	-3.0	7.1	-1.6	21.0	-8.0	
P2	5.3	-1.8	3.7	-0.9	12.3	-5.2	
Population %	100		81.8	3.3	18.2	-3.3	
Contr. to P0			64.4	8.8	35.6	-8.8	

Further applications

- Robilliard, Bourguignon, Robinson (2001): Poverty and distributional impact of the Indonesian crisis
- Bussolo, Lay (2003): Poverty impacts of trade liberalization in Colombia

Integrated macro-micro models

- Fully integrate behavioral microsimulations into an economy-wide modelling framework
- Several attempts, different approaches
 - Cogneau and Robilliard (2006)
 - Madagascar, poverty alleviation programs
 - Complex income generation model, less sophisticated macro model
 - Rutherford, Shepotylo, Tarr (2004)
 - Russia, poverty effects of WTO accession
 - Increase the number of "representative households" to 50000
- Field for future research despite (or because of) the many difficulties involved