Quantitative International Trade: Making Use of New Findings

Samuel Kortum

June 7, 2007
GTAP, Tenth Annual Conference

Slow Adoption of New Empirical Findings

- Don't want to just incorporate facts using mechanical models.

Slow Adoption of New Empirical Findings

- Don't want to just incorporate facts using mechanical models.
- Our models should reflect our view of the economy as an equilibrium system.

Slow Adoption of New Empirical Findings

- Don't want to just incorporate facts using mechanical models.
- Our models should reflect our view of the economy as an equilibrium system.
- Working out an equilibrium system often requires keeping things very simple.

Slow Adoption of New Empirical Findings

- Don't want to just incorporate facts using mechanical models.
- Our models should reflect our view of the economy as an equilibrium system.
- Working out an equilibrium system often requires keeping things very simple.
- But, with innovations in modeling we can have it both ways.

Slow Adoption of New Empirical Findings

- Don't want to just incorporate facts using mechanical models.
- Our models should reflect our view of the economy as an equilibrium system.
- Working out an equilibrium system often requires keeping things very simple.
- But, with innovations in modeling we can have it both ways.
- Briefly discuss two examples where progress has been made.

Example I: Incorporating Geography

- Early gravity models uncovered a striking fact.

Example I: Incorporating Geography

- Early gravity models uncovered a striking fact.
- But a gravity model is too mechanical.

Example I: Incorporating Geography

- Early gravity models uncovered a striking fact.
- But a gravity model is too mechanical.
- Need to build deviations from the law of one price into traditional models.

Example I: Incorporating Geography

- Early gravity models uncovered a striking fact.
- But a gravity model is too mechanical.
- Need to build deviations from the law of one price into traditional models.
- Much recent progress on this front.

Example II: Firm Heterogeneity

- Looking at new producer-level datasets uncovered many new an surprising facts.

Example II: Firm Heterogeneity

- Looking at new producer-level datasets uncovered many new an surprising facts.
- But, its hard to abandon the simplicity of a representative firm.

Example II: Firm Heterogeneity

- Looking at new producer-level datasets uncovered many new an surprising facts.
- But, its hard to abandon the simplicity of a representative firm.
- And, focussing too much on individual producers, its easy to lose track of aggregate adjustments at the heart of trade theory.

Example II: Firm Heterogeneity

- Looking at new producer-level datasets uncovered many new an surprising facts.
- But, its hard to abandon the simplicity of a representative firm.
- And, focussing too much on individual producers, its easy to lose track of aggregate adjustments at the heart of trade theory.
- But, heterogeneity is also at the heart of trade theory, i.e. comparative advantage.

Example II: Firm Heterogeneity

- Looking at new producer-level datasets uncovered many new an surprising facts.
- But, its hard to abandon the simplicity of a representative firm.
- And, focussing too much on individual producers, its easy to lose track of aggregate adjustments at the heart of trade theory.
- But, heterogeneity is also at the heart of trade theory, i.e. comparative advantage.
- Even better, the same models that handle geography also handle firm heterogeneity.

Today's Goal

- Demonstrate a practical application of one such model.
- Calculate consequences of eliminating the US trade deficit for terms of trade and real wages.
- Discuss quantitative methods along the way.

Related Literature

- The "Transfer Problem" debated by Keynes, Ohlin and others.
- Dornbusch, Fischer, and Samuelson (1977) analysis in a 2-country Ricardian model (DFS).
- Series of papers by Obstfeld and Rogoff (2000, ..., 2005).
- Popular writings voicing concern that an adjustment of U.S. current account could be devastating.

Dornbusch, Fischer, and Samuelson

- Continuum of tradeable goods $z \in[0,1]$.
- Cobb Douglas preferences: share $\alpha<1$ allocated evenly over tradables.
- US and $\operatorname{ROW}\left({ }^{*}\right)$, labor endowments L, L^{*}, wages w, w^{*}.
- Relative labor productivity in US $A(z)$, goods ordered so $A^{\prime}(z)<0$.
- Perfect competition.

Equilibrium

- Production condition: produce z in US iff $z \leq \bar{z}$.
- Yields a downward sloping curve:

$$
\omega=\frac{w}{w^{*}}=A(\bar{z})
$$

- Market clearing condition:

$$
\alpha(1-\bar{z})(w L+D)=\alpha \bar{z}\left(w^{*} L^{*}-D\right)+D .
$$

- Yields an upward sloping curve:

$$
\omega=\frac{\bar{z}}{1-\bar{z}} \frac{L^{*}}{L}+\frac{(1-\alpha) D}{\alpha(1-\bar{z}) w^{*} L} .
$$

- An equilibrium is a pair (ω, \bar{z}) at the intersection of these two curves.

Effect of the Deficit

- Larger deficit D shifts up ω given \bar{z}.
- Results in higher equilibrium US relative wage ω and smaller range \bar{z} of tradables produced in US.
- Production of tradables as a share of US GDP falls with higher deficit:

$$
\lambda=\frac{\alpha \bar{z}\left(w L+w^{*} L^{*}\right)}{w L}=\alpha \bar{z}\left(1+\frac{L^{*}}{\omega L}\right) .
$$

How Big Are These Effects?

- GDP's $Y=13.2, Y^{*}=34.0$, US exports $X=1.4$, US imports $I=2.2$, and deficit $D=0.8$ ($\$$ trillions) in 2006.
- Share of US exports in ROW spending on tradables:

$$
\alpha \bar{z}=\frac{X}{Y^{*}-D}=0.04
$$

- Share of ROW exports (US imports) in US spending on tradables:

$$
\alpha(1-\bar{z})=\frac{I}{Y+D}=0.16
$$

- Logic of the model implies $\alpha=0.2$.

Parameterizing Productivity

- Parameterize $A(z)$ as in Eaton and Kortum (2002):

$$
A(z)=\left(\frac{T}{T^{*}}\right)^{1 / \theta}\left(\frac{1-z}{z}\right)^{1 / \theta}
$$

- Thus,

$$
\bar{z}=\frac{T \omega^{-\theta}}{T \omega^{-\theta}+T^{*}} .
$$

- Labor requirements: $\left[A(z)=\frac{a^{*}(z)}{a(z)}\right]$, as:

$$
a^{*}(z)=T^{*-1 / \theta}(1-z)^{1 / \theta}
$$

and

$$
a(z)=T^{-1 / \theta} z^{1 / \theta} .
$$

- Yields exact price index for tradables in the US:

$$
p=e^{-1 / \theta}\left[T w^{-\theta}+T^{*} w^{*-\theta}\right]^{-1 / \theta} .
$$

Counterfactual

- Exogenous change of $D=0.8$ to $D^{\prime}=0$. Given w^{*}, what happens to w ? i.e to

$$
\hat{w}=w^{\prime} / w=\omega^{\prime} / \omega=\hat{\omega} .
$$

- Counterfactual GDP is $Y^{\prime}=w^{\prime} L=Y \hat{\omega}$ while $Y^{*^{\prime}}=Y^{*}$.
- Trick to calculate counterfactual threshold good:

$$
\bar{z}^{\prime}=\frac{T \omega^{\prime-\theta}}{T \omega^{\prime-\theta}+T^{*}}=\frac{\bar{z} \hat{\omega}^{-\theta}}{\hat{\omega}^{-\theta}+(1-\bar{z})} .
$$

- Note that we didn't need to know T, T^{*}, or w (hence, don't need to know the skill of a nation's labor force).
- Just solve for $\hat{\omega}$ in

$$
\left(1-\bar{z}^{\prime}\right) Y \hat{\omega}=\bar{z}^{\prime} Y^{*}
$$

Counterfactual (continued)

- Solves out as:

$$
\hat{\omega}=\left(\frac{\bar{z} Y^{*}}{(1-\bar{z}) Y}\right)^{1 /(1+\theta)}=\left(\frac{\frac{E}{Y^{*}-D} Y^{*}}{\frac{l}{Y+D} Y}\right)^{1 /(1+\theta)}
$$

- The change in the US tradables price index can be written as

$$
\frac{p^{\prime}}{p}=\hat{p}=\left[\bar{z} \hat{\omega}^{-\theta}+(1-\bar{z})\right]^{-1 / \theta}
$$

- The change in the US overall price index is

$$
\hat{P}=(\hat{p})^{\alpha}(\hat{w})^{1-\alpha} .
$$

Results

- Set $\theta=8.28$ (from EK (2002)).
- Solve for $\hat{\omega}=0.96$, i.e. a 4% decline in the US relative wage.
- Change in the US price index for tradables is $\hat{p}=0.99$ so that the change in the US real wage is $(\hat{\omega} / \hat{p})^{\alpha}=0.99$.
- The counterfactual share of tradables in US GDP is $\lambda^{\prime}=0.18$, a 3 percentage point increase.

Beyond the 2-Country World

- Apply what we've learned from the analysis of bilateral trade among the countries of the world.
- Unlike gravity tradition, ignore the usual suspects (distance, common language).
- Instead, extract bilateral resistance parameters directly from bilateral trade shares.
- Advantages: (i) clean and non-parametric and (ii) doesn't impose bilateral balance as would symmetric proxies.
- Demonstrate the critical distinction between adjustments in relative wages (potentially large) and adjustment to real wages (tiny).

Important Caveats

- Our exercise is pure comparative statics: we don't model how, why, or when adjustment of current accounts occurs.
- No attempt to model dynamics, with lower elasticities in the short run, as in Ruhl (2005).
- No attempt to introduce nominal rigidities, which play a major role in much of the current literature.
- Manufacturing does all the work: we hold fixed any non-manufacturing trade imbalances.

Basic Equations

- A world of N countries with n indexing an importer and i and exporter.
- Now have bilateral iceberg costs $d_{n i} \geq 1$ in shipping from i to n.
- Gravity equation (for example from Frechet distribution of efficiencies)

$$
\pi_{n i}=\frac{T_{i}\left(c_{i} d_{n i}\right)^{-\theta}}{\sum_{k=1}^{N} T_{k}\left(c_{k} d_{n k}\right)^{-\theta}}
$$

- Goods Market Clearing condition

$$
Y_{i}^{M}=\sum_{n=1}^{N} \pi_{n i} X_{n}^{M}
$$

- Acknowledge deficits in manufacturing: $X_{i}^{M}=Y_{i}^{M}+D_{i}^{M}$,

Trade in Intermediates

- Let $\beta<1$ be the value added share in producing manufactures.
- Assume a CES aggregator (with parameter σ) for manufactured goods used either as intermediates or as final consumption.
- Price index (in country n) for manufactures:

$$
p_{n}=\gamma\left[\sum_{i=1}^{N} T_{i}\left(w_{i}^{\beta} p_{i}^{1-\beta} d_{n i}\right)^{-\theta}\right]^{-1 / \theta}
$$

- New trade share equation:

$$
\pi_{n i}=\frac{T_{i}\left(w_{i}^{\beta} p_{i}^{1-\beta} d_{n i}\right)^{-\theta}}{\sum_{k=1}^{N} T_{k}\left(w_{k}^{\beta} p_{k}^{1-\beta} d_{n k}\right)^{-\theta}},
$$

Manufactures Within the Overall Economy

- Manufactures Share $\alpha<1$ in the final consumption good.
- Aggregate expenditure:

$$
X_{i}=Y_{i}+D_{i}=w_{i} L_{i}+D_{i}
$$

- Acknowledge trade in non-manufactured goods (oil, services) so that D_{i} need not equal D_{i}^{M}.
- Spending on manufactures:

$$
X_{n}^{M}=\alpha X_{n}+(1-\beta) Y_{n}^{M}
$$

Equilibrium

- Factor market clearing

$$
\begin{aligned}
w_{i} L_{i}+D 1_{i} & =\sum_{n=1}^{N} \pi_{n i}\left[w_{n} L_{n}+D 2_{n}\right] \\
D 1_{i} & =D_{i}-\frac{1}{\alpha} D_{i}^{M} \\
D 2_{n} & =D_{n}-\frac{1-\beta}{\alpha} D_{n}^{M}
\end{aligned}
$$

- price levels

$$
p_{n}=\gamma\left[\sum_{k=1}^{N} T_{k}\left(w_{k}^{\beta} p_{k}^{1-\beta} d_{n i}\right)^{-\theta}\right]^{-1 / \theta}
$$

Equations for Counterfactual

- Factor market clearing

$$
\begin{gathered}
\widehat{w}_{i} Y_{i}+D 1_{i}^{\prime}=\sum_{n=1}^{N} \frac{\pi_{n i} \widehat{w}_{i}^{-\theta \beta} \widehat{p}_{i}-\theta(1-\beta)}{\sum_{k=1}^{N} \pi_{n k} \widehat{w}_{k}^{-\theta \beta} \widehat{p}_{k}-\theta(1-\beta)}\left(\widehat{w}_{n} Y_{n}+D 2_{n}^{\prime}\right) \\
D 1_{i}^{\prime}=D_{i}^{\prime}-\frac{1}{\alpha} D_{i}^{M \prime} \\
D 2_{n}^{\prime}=D_{n}^{\prime}-\frac{1-\beta}{\alpha} D_{n}^{M \prime}
\end{gathered}
$$

- price levels

$$
\widehat{p}_{n}=\left(\sum_{k=1}^{N} \pi_{n k} \widehat{w}_{k}^{-\theta \beta} \widehat{p}_{k}^{-\theta(1-\beta)}\right)^{-1 / \theta} .
$$

Implementation

- Set $\alpha=0.188, \beta=0.312$, and $\theta=8.28$.
- Alvarez and Lucas (2006) prove there is a unique solution, and motivate a numerical algorithm to find it.
- Wage changes are normalized so that world GDP remains constant.

Table 1: Trade Imbalances

	current account			manufacturing trade balance	
	\$ billions	$\%$ of GDP		actual	counterfactual
ChinaHK	85.6	4.1		121.8	36.2
France	-5.6	-0.3		-5.3	-0.3
Germany	103.0	3.8		209.5	106.5
Japan	173.3	3.7		277.0	103.7
United States	-664.0	-5.7		-484.6	179.4

Table 3: Changes that Eliminate Current Account Imbalances

	initial CA	implied changes		
	(\% of GDP)	wage	real wage	welfare
hinaHK	4.1	1.02	1.00	1.04
rance	-0.3	1.00	1.00	1.00
Sermany	3.8	1.03	1.00	1.04
apan	3.7	1.04	1.00	1.04
Jnited States	-5.7	0.93	0.99	0.94

Table 4: Actual and Counterfactual Bilateral Imbalance

	balance with U.S.			balance with China	
	actual	counterfactual		actual counterfactual	
ChinaHK	166.6	64.9		-9.3	
France	1.2	-22.5		-11.3	-8.6
Germany	27.2	-30.8		-7.0	18.3
Japan	84.4	-3.5		40.8	-64.9
United States			-166.6		

Lessons

- Moderate changes in wages.
- Tiny changes in real wages.
- Substantial changes in trade flows and manufacturing shares.
- Some bilateral deficits persist.

