Endogenous Knowledge Spillovers and Technical Change

Small group presentation
Hsin, Nazneen, Jun, Andreanne, Peter, Manoj, KJ, Qun, Marianne
Technological Spillover

• The spillover mechanism
 Hsin
• Base Experiment
 Peter
• Innovation in China
 Manoj
• Innovation in Machinery
 Qun, KJ
• GMO and the EU ban
 Jun, Andreanne
• Trade liberalisation &
 endogenous spillovers
 Nazneen, Marianne
TECHNOLOGICAL CHANGE

• Input augmenting tech. change

\[\text{afall}(j,i,r) \rightarrow \text{spillover} \]

\[\text{afall}(j,i,s) \]

• Productivity change using input \(j \) in the production of good \(i \) in region \(s \)

• Transmitted to other countries through trade (knowledge embodied in trade)
TECHNOLOGICAL CHANGE

\[\frac{a_s}{a_r} = \gamma \left(E_{rs}, H_{rs}, D_{rs} \right) = E_{rs} \left(1 - H_{rs} \cdot D_{rs} \right) \]

- **E index**: amount of knowledge received through endogenous bilateral trade flows
- **H**: Absorption parameter
 - Number of years of schooling
- **D**: Structural Similarity Index
 - Land/labour ratios
TECHNOLOGICAL CHANGE

• Input augmenting tech. Change also translates to primary factor biased tech change

\[
\text{afeall}(f,i,r) = \beta \text{afeall}(j,i,r) \quad \text{spillover} \quad \text{afeall}(j,i,s)
\]

• Productivity change using factor (f) in the production of good(i) in region (s)
Analogy: Water spillovers

- Imagine a canoe battle: Shock: Nanette
- Water spillovers higher:
 - The more you encounter Nannette the more water spillovers you get
 - The more similar you are (Niels and Mustafa also trouble makers)
 - The smarter you are (Tom full water spillovers)
Chemical Augmenting Shock (10%) in Grains in EU & China

With Land Factor Bias

Based on the Material Developed by Meijl and Tongeren
1. Chemical Augmenting Shock (10%) in Grains in EU

Spillover factors:
- Large for JAP, ARG and CHN
- Small for AUS and NAM

Absorption and structural similarity factors (spilldelta) are high for Japan and Argentina.

The share of chemical imports from EU are higher for Japan and Argentina.

Under the shock, the outputs of grain qo (gro, EUR) increase in Japan and Argentina.

Japan and Argentina have higher negative prices in grain ps (gro, EUR).

Notes: Grain & oil – gro, Chemical – crp.
Innovator does not achieve highest production growth.

Cost share of land in Japan very high and high spillover coefficient.
<table>
<thead>
<tr>
<th>ps(\text{gro, EUR}):</th>
<th>Japan</th>
<th>ARG</th>
</tr>
</thead>
<tbody>
<tr>
<td>STC (contribution of endowments)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>STC1 (contribution of intermediate factors)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Price of land: pfe (land, gro, EUR)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Primary factor: afe (land, gro, EUR)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Value-added: ava (gro, EUR)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

| qo decomposition qxs (gro, EUR): |
| SHRDM | - | - |
| SHRXMD | - | - |

| qo decomposition qxs (crp, EUR): |
| SHRDM | - | - |
| SHRXMD | - | - |

| Welfare (tech change) A: | - | - |
Welfare Decomposition Base Case

allocative	tech_change	tot	Total
1 AUS | 4 EUR | 5 JAN|
-1500 | -1000 | 0 | 500 |
2. Chemical Augmenting Shock (10%) in Grains sector in China

Spillover factors:
- Large for ROW (9.8), Japan (9.6), EUR (6.5) and ARG (3.5)
- Small for AUS (0.2), NAM (0.5)

Japan: Large share in chemical exports from China: 35%, followed by EUR: 23%.
Absorption and structural similarity factors are very high for ROW, Japan and EUR
Chemicals demand falls in all regions: China: 8%, Japan: 6% . Note: <10% - expansion effect.
Largest price falls in Japan and next highest in China; prices fall in all regions.
Grain output increase is the **highest in Japan (2.7%)** which is **higher than that of China (1.1)**; **AUS: –2.4%**

<table>
<thead>
<tr>
<th></th>
<th>Japan</th>
<th>China</th>
<th>AUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STC</td>
<td>-4.17</td>
<td>-2.88</td>
<td>-0.46</td>
</tr>
<tr>
<td>STC1</td>
<td>0.76</td>
<td>-1.75</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

qo decomposition (crp):

<table>
<thead>
<tr>
<th></th>
<th>Japan</th>
<th>China</th>
<th>AUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHRDM</td>
<td>-0.78</td>
<td>-0.99</td>
<td>-0.01</td>
</tr>
<tr>
<td>SHRXMD</td>
<td>-0.03</td>
<td>-0.02</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

qo decomposition (grain):

<table>
<thead>
<tr>
<th></th>
<th>Japan</th>
<th>China</th>
<th>AUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHRDM</td>
<td>2.71</td>
<td>0.86</td>
<td>-0.25</td>
</tr>
<tr>
<td>SHRXMD</td>
<td>0.00</td>
<td>0.20</td>
<td>-2.20</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td>China</td>
<td>AUS</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Pm grains</td>
<td>-0.514</td>
<td>-0.513</td>
<td>-0.513</td>
</tr>
</tbody>
</table>

Cost structure of grain sector

<table>
<thead>
<tr>
<th></th>
<th>Japan</th>
<th>China</th>
<th>AUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land</td>
<td>0.29</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Labour</td>
<td>0.37</td>
<td>0.37</td>
<td>0.28</td>
</tr>
<tr>
<td>Capital</td>
<td>0.11</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>Crp</td>
<td>0.07</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>EV</td>
<td>1081</td>
<td>1835</td>
<td>-78</td>
</tr>
</tbody>
</table>
Endogenous International Technology Spillovers: The Case of machinery

Qun Shi
K.J. Park
Hsin Huang
Machinery saving: No labor bias

<table>
<thead>
<tr>
<th>Region</th>
<th>Spillover coefficient</th>
<th>output</th>
<th>Export component</th>
<th>Price of Grain</th>
<th>Cost share of Machinery in grain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS</td>
<td>0.5</td>
<td>0.12</td>
<td>0.12</td>
<td>-0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>NAM</td>
<td>0.36</td>
<td>0.03</td>
<td>0.02</td>
<td>-0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>ARG</td>
<td>0.59</td>
<td>-0.02</td>
<td>-0.05</td>
<td>-0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>EUR</td>
<td>0.05</td>
<td>0.14</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>JAN</td>
<td>0.65</td>
<td>-0.03</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>CHI</td>
<td>0.43</td>
<td>-0.00</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Welfare Changes and Main Conclusions

• Everybody is better off! (technology gain)
• EU, NAM (ROW) are the biggest winners. Why? (innovations and spillover + bigger producer)
• Exporters gain, but importer lose (terms of trade effect)
Endogenous International Technology Spillovers: The Case of GM Adoption

Andreanne Leger
Yang Jun

GTAP
Global Trade Analysis Project
Technical Change

- GMOs: chemicals augmenting shock in grains sector, from North America, with land bias and full spillovers

- Shock \(\text{afall(crp, gro, NAM)} \):

\[
\text{afall}(k, i, s) = \left\{ \frac{\text{SIINT}(k,i,r,s)}{\text{SDINT}(k,i,r)} \right\}^{(1\text{spilldelta}(s,r) * \text{absflex})* \text{spillflex} * \text{afall}(k, i, r)}
\]

Where: \(\{...\} \) = embodied knowledge index \(E_{irs}X_{irs}/\Sigma_{k}X_{irk} \)

\(\text{Spilldelta} \) = effectiveness of foreign knowledge
Results

<table>
<thead>
<tr>
<th></th>
<th>AUS</th>
<th>ARG</th>
<th>JAN</th>
<th>EUR</th>
<th>RAS</th>
<th>SAM</th>
<th>CHN</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afall</td>
<td>3.691</td>
<td>0.632</td>
<td>0.608</td>
<td>0.991</td>
<td>0.697</td>
<td>1.868</td>
<td>1.599</td>
<td>0.434</td>
</tr>
<tr>
<td>Eirs</td>
<td>0.051</td>
<td>0.011</td>
<td>0.010</td>
<td>0.026</td>
<td>0.040</td>
<td>0.124</td>
<td>0.088</td>
<td>0.013</td>
</tr>
<tr>
<td>Spill-delta</td>
<td>0.672</td>
<td>0.397</td>
<td>0.400</td>
<td>0.375</td>
<td>0.180</td>
<td>0.203</td>
<td>0.252</td>
<td>0.283</td>
</tr>
</tbody>
</table>

-In the other extensions, the embodied knowledge parameter (E) is not strongly correlated to the technical change (afall) while it explains here half of the change – especially important for China, which imports a large proportion of chemicals for grains from North America.

-In general the shocks are not very important – because of the structural dissimilarities between USA and other countries (except Australia).
Graphical representation!
Why are grain prices going down?

• Diminution of chemical price in CHN -> decrease in grains price given the important chemical share in the cost structure

• In NAM, the driving force is the technological change
 – Land prices also go down, but the important effect is the aggregate as land is not a very important cost share

• But prices of chemicals go up!
Why do only NAM and CHN increase grain production?

• NAM: comes from an increase in domestic consumption but especially from an increase in exports (29% of grain use)
 – Change in technology
 – Relative price lower on world markets -> substitution towards NAM grains

• CHN: comes from an increase in domestic consumption, due to lower grain prices
Why is the price of chemical going up when you need less of it?

• Endowment price goes up: labour becoming scarce because of increase in food processing

• Processing more grains? No! Grains represent only 5% of inputs!

• Processing more livestock!
 – Decrease in grains price -> increase in livestock production (21% of cost is from grains)
 – Increased demand for livestock in food processing!
 – Labour intensive sectors!

• Therefore scarcity in labour caused by food processing induces an increase in chemical prices!
How are the benefits distributed?

• Results driven by the technological change, especially for NAM

• Terms of trade effect negative for NAM
 – World prices going down
 – Export price going down for NAM -> losing on the export side (Armington assumption)

• Import price also goes down -> small benefits
What about restricting spillovers?

• Assume AUS, EUR, JAN do not benefit from the technological change

• Almost no difference!
 – AUS, EUR, JAN did not benefit so much from spillovers in the first place -> main change
 – For EUR and JAN, allocative efficiency increases due to moving out of resources towards less distorted sectors
Endogenous International Technology Spillovers: Trade Liberalisation

Marianne Kurzweil
Nazneem Ahmed
Trade Liberalization and Technological Spillover

- comparison of two scenarios:
 - base: output augmenting technological shock in the processed food sector (pcf); aoall (pcf, EUR) = +10%; H and D ignored; 2*E
 - base + import tariff abolishment tms (pcf; EUR; ALL_REG)

Base results:

<table>
<thead>
<tr>
<th></th>
<th>Spillover Coeff</th>
<th>output</th>
<th>output decomp</th>
<th>deco dom use</th>
<th>supply price</th>
<th>qpd</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAM</td>
<td>2.41</td>
<td>-1.3</td>
<td>both (‘-0.7, ‘-0.6)</td>
<td>firm (‘-0.84)</td>
<td>-3.23</td>
<td>exp. (0.26)</td>
</tr>
<tr>
<td>JAN</td>
<td>2.57</td>
<td>0.32</td>
<td>SHRDM (0.4)</td>
<td>cons (0.81)</td>
<td>-3.48</td>
<td>exp. (1.27)</td>
</tr>
</tbody>
</table>
Trade Liberalization and Technological Spillover

Reasons:
- NAM = net exporter, JAN = net importer
- world price decreases by 6.2%
- GDP and wage increase in JAN relatively higher than in NAM
- cost share in consumption in pcf higher in JAN

=> Higher private consumption demand in JAN for pcf
Trade Liberalization and Technological Spillover

Consideration of trade liberalization: comparison with base

Spillover coeff:

output:
Trade Liberalization and Technological Spillover

Reasons:
• domestic demand goes down
• intermediate demand in pcf sector declines
• tariff rates: JAN: 119%, imports from the EUR increase
• imports dominate domestic supply

Welfare:
• relatively less after liberalization in EUR
• JAN becomes net exporter
• alloc. efficiency in EUR goes down because pcf highly subsidized

=> More exports => more expenses due to subsidies