GTAP-E Small Group Presentations

Teams; Yoji Kunimitsu & Geraldo Martha Admir Betarelli & Aline Magalhaes Alex Hilsop & Oh Sang Kwan Dave Gustafson & Hao Luan

GTAP-E

- 79 GTAD SC Includes greater energy sector detail
 - Tracks CO₂ emissions from combustion of fossil fuels, by region, source, and sector
 - Explicit treatment of carbon taxation, emission quotas, and emissions trading

- Every region is mapped to a bloc

- A region that does not participate in emission trading is mapped to its own bloc
- Carbon trading scenarios are modeled using combinations of Closures and Shocks

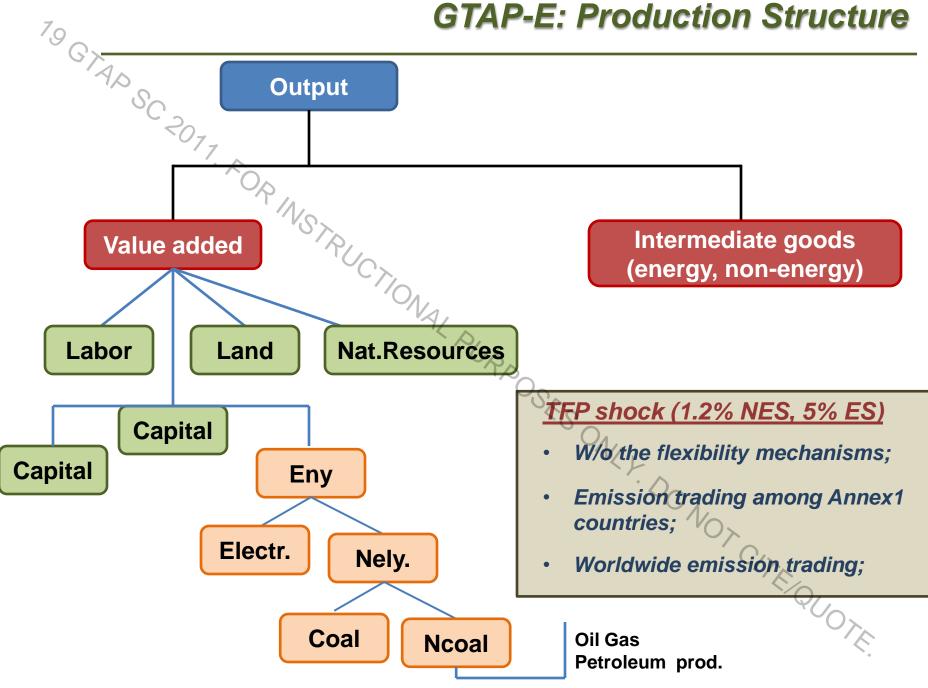
Baseline Application of GTAP-E

- "Annex I" countries have region-specific carbon reduction targets
 - -US: -17%
 - EU27: -17%
 - Japan: -30%
 - EEFSU: +9% (artifact)
 - Rest of Annex 1: -40%
- Other regions: China, India, EEX, ROW
- Three trading scenarios (see next slide)

Trading Scenario Results

A. No emissions trading ("notr")

B. Emission trading within Annex I ("tr")C. Worldwide emission trading ("wtr")


	Case A. ("notr")		Case E	8. ("tr")	Case C. ("wtr")				
	C emissions (%)	C price (\$/tonne)	C emissions (%)	C price (\$/tonne)	C emissions (%)	C price (\$/tonne)			
USA	-17	67.74	-15.69	59.64	-7.02	22.23			
EU27	-17	90.04	-12.39	59.71	-5.22	22.23			
EEFSU	1.56	0	-20.99	59.07	-9.52	22.18			
JPN	-30	248.21	-11.32	59.75	-4.52	22.23			
RoA1	-40	275.96	-16.22	59.85	-7.39	22.26			
EEX	1.63	0	1.28	0	-4.65	22.23			
CHN	0.42	0	0.26	0	-16.6	22.19			
IND	0.74	0	0.5	0	-15.82	22.18			
ROW	1.53	0	1.19	0	-7.64	22.22			

Percent Changes in Household Utility and Terms-of-Trade

	Case A. ("notr")		Case B. ("tr")		Case C. ("wtr")	
	Utility	TOT	Utility	TOT	Utility	TOT
USA	-0.1	0.49	-0.1	0.4	-0.05	0.18
EU27	-0.12	0.17	-0.08	0.13	-0.01	0.07
EEFSU	-0.94	-1.11	1.08	-0.21	0.09	-0.33
JPN	-0.41	0.9	-0.13	0.39	-0.03	0.26
RoA1	-1.06	-0.15	-0.5 0	-0.37	-0.23	-0.22
EEx	-0.61	-1.49	-0.43	-1.06	-0.37	-0.7
CHN	0.01	0.07	0.01	0.07	0.22	0.13
IND	0.25	0.54	0.18	0.39	0.16	0.55
ROW	0.11	0.12	0.08	0.1	0.05	0.14
					TE	í.
EV (M USD)	(80,58	9.52)	(34,53	7.86)	(14,48	9.86)

The Scaure More Marken Scaure And Andrew Marken Scaure Andrew Scaure And

GTAP-E: Production Structure

GTAP-E: Exercise (TFP, NES)

Reduction in emissions and cost of reduction in response to TFP shock non-energy sectors

79

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	Emissions (million t C)	% change (basel.)	% change (TFP, NES)	USD/t C (basel.)	USD/t C (TFP, NES)
Annex-1	3961,1	C			
no trading		-16,6	-16,5	91,2	98,6
trading (A1)		-15,4 🔨 🖄	-15,4	59,6	63,3
trading (Wld.)		-6,8	-6,7	22,2	24,5
Non-Annex-1	3083,9		SA		
no trading		1,1	1,8	0,0	0,0
trading (A1)		0,8	1,5 ()	0,0	0,0
trading (Wld.)		-11,0	-11,1	22,2	24,4
World	7045,0			NON	
no trading		-8,9	-8,5	91,2	98,6
trading (A1)		-8,3	-8,0	59,6	63,3
trading (Wld.)		-8,6	-8,6	22,2	24,5
					E.

79 GYAD Welfare gains in response to TFP shock to non-energy sectors

	1			
	Total (basel.)	Regions	Total (TFP)	Regions
	USD million	% chg.	USD million	% chg.
No trading	-80589	-1.06 to 0.25	733292	0.25 to 4.5
Trading A1	-34538	-0.5 to 1.08	781302	1.08 to 3.24
Wld.Trading	-14490	-0.37 to 1.57	802222	0.22 to 2.94
			S'ONKY. DO NO;	CITE QUOTE

# 79 GYAD Welfare gains in response to TFP shock to non-energy sector

	No trading		Trad	ling A1	Wld. Trading	
Region	(basel.)	(TFPs.)	(basel.)	(TFPs.)	(basel.)	(TFPs.)
1 USA	13	29	32	27	35	27
2 EU27	18	35	27	34	6	34
3 EEFSU	9	1	-24	3	-5	2
4 JPN	20	10	15	ંદ્યુત	8	11
5 RoA1	27	3	30	5	33	5
6 EEx	19	5	31	5	64	5
7 CHN	0	6	-1	5	-23	6
8 IND	-2	1	-3	1	-7	
9 ROW	-4	10	-7	9	-11	9 4

# TFP shock in Electricity sector

- Assuming that
  - TFP in electricity sector increased by 5%
- Why electricity?
  - Cleaner than others
  - All people concern about it
  - It can affect to firms as well as consumers
- Then we re-simulated the carbon tax and carbon emission trade
  - Non-Trade (CO2 tax only)
  - Trade within Annex countries
  - World trade

## Results about CO2 emissions and price

	Annex I emissions				Emissions reduction		Emissions reduction	
	07	reduction w	ith no use	with tradi	ng among	with worldwide		
		of flexi	bility	Ann	ex l	emission	s trading	
	x	gco2t	RCTAX	gco2t	RCTAX	gco2t	RCTAX	
Witho	ut TFP increa	ase in electric	ity sec.					
	Annex	-16.6	136.4	-15.4	59.6	-6.8	22.2	
	N-Annex	1.1	-4	0.8	-	-11.0	22.2	
	C-leakage	4.93		4.00		na		
With T	FP increase	in electricity	sec.					
	Annex	-16.7	131.6	-15.4	56.4	-6.8	19.8	
	N-Annex	0.0	-	-0.2	0//	-11.0	19.8	
	C-leakage	0.09		na	· K. D.			

CO2 Tax 1 Domest. Price of Output 1 CO2 from Firms` Import 1 gco2(coal, others) 1 CO2 from Cons. & Inv. 4 gco2(perto-prod) 4

• CO2 trade 1 D-Price of output 4 CO2 from Firms` Import 4 gco2(coal, others)

CO2 from Cons. & Inv.

gco2(petro. Prod)

# Results about utility change

	Annex I e	Annex I emissions		Emissions reduction		Emissions reduction		
	reduction with no use		with tradi	ng among	with worldwide			
	offlex	ibility	Ann	ex l	emission	s trading		
	u	tot	u	tot	u	tot		
Without TFP incre	ase in electri	city sec. 🔨	D,					
Annex	-0.53	0.06	0.05	0.07	-0.05	-0.01		
N-Annex	-0.06	-0.19	-0.04	-0.13	0.02	0.03		
With TFP increase	in electricity	sec.	S S O					
Annex	-0.25	0.03	0.31	0.04	0.21	-0.03		
N-Annex	0.25	-0.16	0.28	-0.10	0.33	0.05		
					NON			
					NOT CITE			
					E E	0.		
						YUOx		
						E.		

# ⁷^o Summary and Conclusion

- We found that;
  - TFP increase in non energy industries shows that Annex-1 countries were little affected but non Annex-1 countries were a lot.
  - However, such increase resulted in significantly increased welfare gains.
  - TFP increase in Electricity could decrease the price of CO2 trading and increase utility of people via an increase of productivity in all industries.
  - However, it had very small impact on CO2 trade effect.
- It can be said that, as a conclusion, TFP is critical and TFP in all industry has much bigger impact on our economies.

# Inclusion of China and India in Annex 1 Countries

Imir Antonio Betaren . Aline Souza Magalhaes Admir Antonio Betarelli Jr.

### Introduction

- 79 GTAD SC 207 China and India are important emitters of greenhouse gases.
  - In the forthcoming negotiations of the Kyoto Protocol, it is possible that they are included in Annex 1 countries with obligatory emissions' targets.
  - So, we've changed the scenario to include China and India in Annex 1 countries. DO NO.

ST CITE QUOTE

# Experiments, Closure and Shocks

- **Experiment 1**: Emission reduction with emission trading among Annex 1 countries including China and India
- Experiment 2: Emission reduction with worldwide emission trading.
- Shock: Emission reduction of 17% in China and India as USA and EU.
- Expected results: Decline of total emissions and welfare in China and India.

### Results

79 GTAD		R	lesul	ts						
0(	Table 1: Actual reduction in emissions of achieving the emission reductio   7 targets									
	% Reduction in Emissions									
		With emission t	trading among	With worldwide emission						
			Annex 1 countries		ing					
		Without China	Inclusion of	Without China	Inclusion of					
		and India	China/India	and India	China/India					
	1 USA	-15.69	12.32	-7.02	-10.17					
	2 EU27	-12.39	-9.59	-5.22	-7.65					
	3 EEFSU	-20.99	-16.58	-9.52	-13.76					
	4 JPN	-11.32	-8.67	-4.52	-6.66					
	5 RoA1	-16.22	-12.81	S-7.39	-10.57					
	6 EEx	1.28	1.09	-4.65	-6.97					
	7 CHN	0.26	-26.17	-16.6	-22.73					
	8 IND	0.5	-24.65	-15.82	-21.44					
	9 ROW	1.19	1.08	-7.64	-10.68					

- Reduction in emissions is driven by the decrease in the activity level in •
- China and India, especially the decrease in minute decrease. Emissions' intensity and elasticities are different across the agents and •

SC	Resu	lts
Table	e 2: Welfare effects of imp	lementing the emission
• /		on in Welfare
	With emission trading	With worldwide emission
	among Annex 1 countries	trading
1 USA	-0.09	-0.06
2 EU27	-0.06	-0.01
3 EEFSU	0.68	0.22
4 JPN	-0.09	0.22 -0.04 -0.34 -0.56
5 RoA1	-0.39	-0.34
6 EEx	-0.36	-0.56
7 CHN	0.04	~°C0.05
8 IND	-0.06	-0.02
9 ROW	0.07	0.1

There is an unexpected result. Despite the significant reduction of ۲ emissions and activity level in China (-17%), welfare has increased. Why??

### Results

- 79 GTAD SC Decomposition of welfare shows us that the contribution of carbon trading is ٠ driving the result.
  - The cost structure of Chinese Economy and substitution elasticities allows it to ٠ have lower abatement costs. Therefore, China is able to sell more tradable permits to other countries and get more trading revenue.
  - But it's still necessary to dig in and to do a detailed analysis... •

			$\mathbf{N}$					
Table 3: Decomposition of Welfare								
WELFARE	Carbon trading	Allocative effects	Terms of trade	Changes in the price of cgds	Total			
1 USA	-3344.02	-10380.04	3760.09	313.41	-9650.57			
2 EU27	-3467.91	-7056.05	4184.08	-119.35	-6459.24			
3 EEFSU	7176.28	-1228.44	-723.05	15.89	5240.68			
4 JPN	-2765.17	-2577.66	1846.24	-206.44	-3703.03			
5 RoA1	-3357.62	-2580.3	-2093.24	5.12	-8026.04			
6 EEx	0	939.87	-10250.02	275.63	-9034.51			
7 CHN	4763.9	-5521.36	1411.56	-97.78	556.32			
8 IND	956.02	-2090.84	756.14	11.44	-367.23			
9 ROW	0	1311.53	1081.49	-197.35	2195.67			
Total	-38.53	-29183.3	-26.72	0.58	-29248			

*others components were excluded (null values)

# 79 GTAD SC 2017 1 The impacts of oil supply control under the worldwide emissions Oh Sang Kwon NKY. Do Nor CITE QUOTE. trading scheme

### Motivation

- 79 GTAD SC 207 "Perfect World" – worldwide emission trading
  - Base case: EEX experiences welfare reduction and TOT decreases
    - Oil price has declined
  - EEX can take action!
  - What are the impacts of EEX imposing an output tax to restrict oil production?
  - Closure: swap qo("oil","eex") = to("oil","eex")

– Shock qo("oil","eex") = -10

⁷ Ompacts on Carbon Price and Welfare (% change from the base data)

in Sa							
12 SC	No Outpu	ıt Tav		Output Tax (10% Reduction in EEX's Oil Production)			
	Carbon			Carbon	Flouden	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Price	Welfare	тот		Welfare	тот	
	(\$/T)	(%)	(%)	T)	(%)	%)	
USA		-0.05	0.18		-0.17	-0.33	
EU27		-0.01	0.07		-0.20	-0.12	
EEFSU		0.09	-0.33	PUD -	0.79	1.2	
JPN	22.2	-0.03	0.26	19.7	-0.23	-0.65	
RoA1		-0.23	-0.22		-0.14	0.12	
EEx		-0.37 -0.7	0.59	1.45			
CHN		0.22	0.13		0.02	-0.28	
IND		0.16	0.55		-0.42	-0.89	
ROW		0.05	0.14		-0.28	-0.36	
							E.
World Oil							TEQUOT
Price (%)	-1.44			5.53			

Change in We	lfare Decompo	osition due to	the Output T	āx in EEX (%)
°C 207-	Welfare Deco	mposition		
	Emission Td.			
WELFARE	Revenue	Eff.	ТОТ	Total
1 USA	0.16	-0.88	-2.66	-2.43
2 EU27	0.16	-13.20	-2.58	-25.24
3 EEFSU	-0.14	NAL 0.85	4.59	7.39
4 JPN	0.18	-3.97	-3.55	-6.79
5 RoA1	0.13	-0.84	1.48	1.40
6 EEx	-0.25	-0.76	3.05	2.59
7 CHN	-0.18	0.10	-2.98	-0.93
8 IND	-0.15	-1.95	-2.89	Nox -3.59
9 ROW	-0.04	-2.46	-3.51	C/ <del>-</del> 6.25
Total	-0.55	-1.91	5.68	-1.90

No TaxTaxDifferenceUSA7.027.510.49EU275.225.750.53EFESU9.529.080.44							
No Tax	Тах	Difference					
7.02	7.51	0.49					
5.22	5.75	0.53					
9.52	9.08	-0.44					
4.52	6.36	1.84					
7.39	7.84	0.45					
4.65	~°3.96	-0.69					
16.6	15.4	-1.20					
15.82	15.19	-0.63					
7.64	8.27	0.63					
6.78	7.22	0.45					
11.04	10.46	-0.58					
8.64	8.64	-0.00 ^{~Q} /					
	No Tax 7.02 5.22 9.52 4.52 7.39 4.65 16.6 15.82 7.64 6.78 11.04	No TaxTax7.027.515.225.759.529.084.526.367.397.844.653.9616.615.415.8215.197.648.276.787.2211.0410.46					

# Impacts of Oil Output Tax on Price Change Rates (%)

°C ZO	No Tax		Тах		Difference	
Market prices	USA	EEx	USA	EEx	USA	EEx
land	-0.01	0.41	0.26	4.38	0.27	3.97
unsklab	0.28	0.01	0.48	0.51	0.2	0.5
sklab	0.29	0.03	0.48	0.55	0.19	0.52
capital	-0.2	-1.08	-0.11	-3.35	0.09	-2.27
natlres	-7.39	-3.89	2.62	-27.78	10.01	-23.89
Agriculture	0.31	0.11	0.68	0.69	0.37	0.58
Coal	-1.09	-1.27	-0.76	-2.17	0.33	-0.9
Oil	-1.38	-1.52	3.61	6.99	4.99	8.51
Gas	-0.87	-1.37	-0.47	-1.42	0.4	-0.05
Oil_pcts	-0.65	-0.07	4.6	6.1	5.25	6.17
Electricity	4.91	5.02	4.82	5.91	-0.09	0.89
En_Int_ind	0.59	0.86	1.05	0.89	0.46	0.03
Oth_ind_ser	0.32	0.1	0.58	-0.19	0.26	-0.29
CGDS	0.32	0.21	0.56	0.07	0.24	-0.14

# ⁷ Optimal Welfare (EEX)

Quantity Reduction(%)	Welfare Change (u)
10 RUCTIO	0.59
20 NAL	0.59 1.22 1.41 0000000000000000000000000000000000
30	1.41
40	1.13 NKL
55	-0.34
	CITEQUOT

 $\langle \cdot \rangle$ 

### ⁷⁹G, Summary and Conclusion

- 1. Worldwide emission trading has been suggested as the most efficient and ideal mechanism of reducing Co2 emission.
- 2. Whatever carbon reduction mechanism is chosen, energy exporting countries may obtain welfare loss, mainly due to the deterioration of their terms of trade.
- 3. The potential negative gain may induce them to take some actions to cut oil supply (e.g. via output tax on oil).
- 4. Those actions enhance EEx's terms of trade and may make the bloc obtain positive gains, but generate additional distortions in the world market.
- 5. Even China and India which can sell permits may get loss by the introduction of the mechanism if EEx controls its output (or price) of oil.

# To char of the second s esen. Dave Gustafson чао Luan Moronequore.

# Small Project Summary

- We attempted to identify the carbon taxation and trading scheme that has the maximum net sustainability benefit, when considering both economic factors (modeled within GTAP-E) and the environmental/social harm avoided by reducing carbon emissions.
- We calculated net sustainability benefit as a function of Annex I target carbon reductions
  - Targets were varied from 5% to 90%, while TEQUOTE allowing worldwide emission trading.

# "Social Cost of Carbon"

• Definition:

"the lifetime damage costs associated with incremental greenhouse gas emissions"¹

• Recently estimated values (and ranges):

- Stern Review (2007): \$340/tonne (\$65-\$905)²

- UK Government (2009): \$84/tonne (\$41-\$124)¹
- US Government (2010): \$21/tonne (\$5-\$65)³

¹ UK Department of Energy and Climate Change (2009). *Carbon Valuation in UK Policy Appraisal: A Revised Approach.* ² *Yale Symposium on the Stern Review* (2007). This is the base case result. Other experiments gave central values from \$70 to \$505. ³ US Department of Energy (2010). *Social Cost of Carbon for Regulatory Impact Analysis under Exec. Order 12866 13.* 

### Quantifying Net Sustainability Benefits of Carbon Reductions

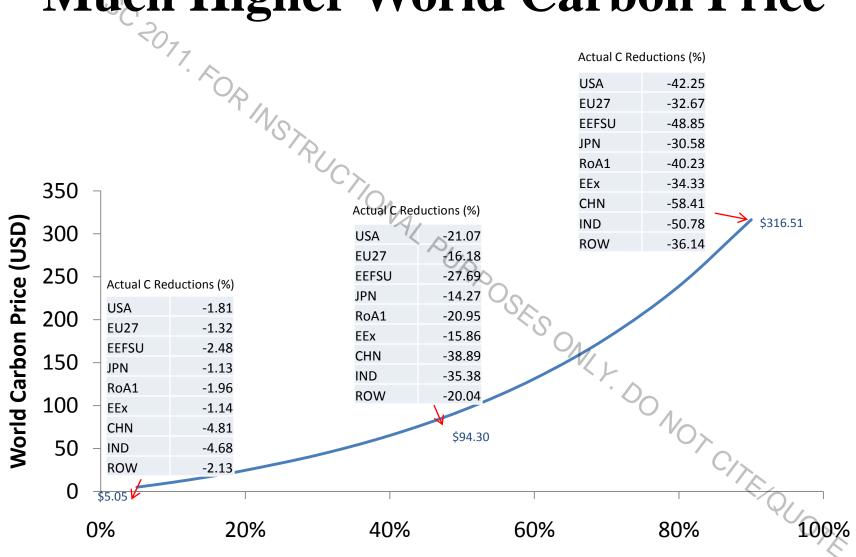
- Components of sustainability:
  - Economic *compassume* equal to EV (in GTAP-E)
  - Environmental assume both are captured by
  - Social the "Social Cost of Carbon"

SUS(reg) = EV(reg) + (SCC(reg)*CO2red)

We did not have information on the regional variation of *SCC*, so we assumed a constant value worldwide

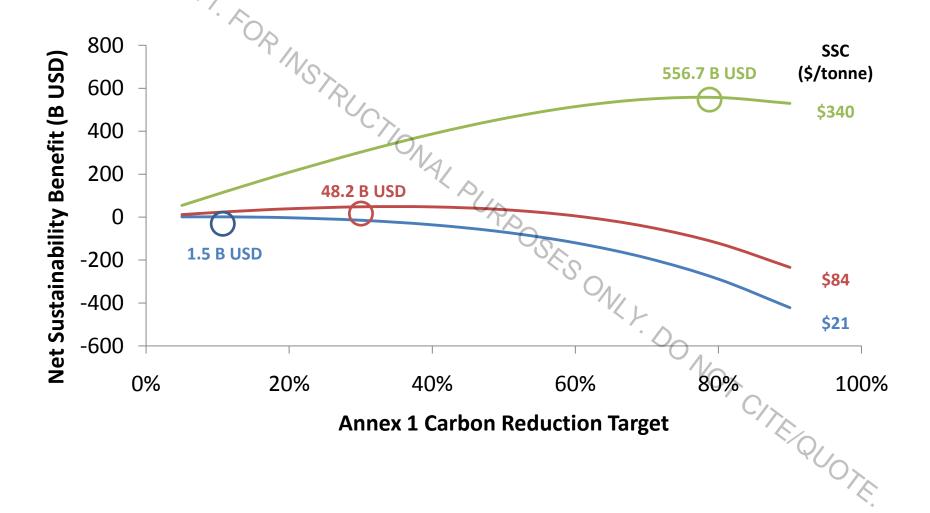
### **Use of Shocks to Simulate Different Annex I Carbon Reduction Targets**

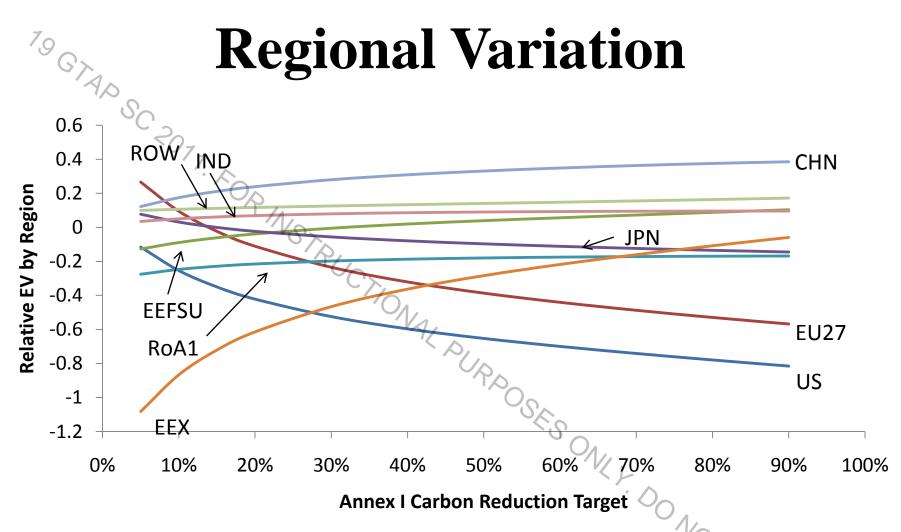
Shock file similar to example provided in baseline simulation:¹


shock gco2q("USA") = -17; shock gco2q("EU27") = -17; shock gco2q("JPN") = -30; shock gco2q("RoA1") = -40;

EV = -16.8 B USD Total Carbon Reduction = 0.667 GtC World Carbon Price = \$24.95

Example shock file from our small project (20% Annex I target): shock gco2q("USA") = -20; shock gco2q("EU27") = -20; shock gco2q("JPN") = -20; shock gco2q("RoA1") = -20;


We found that EV and actual carbon reductions were insensitive to re-allocation of regional carbon reduction targets, under the assumption of worldwide trading of emissions – thus, for simplicity we kept all Annex I targets equal to each other


### Major Carbon Reductions Require a Much Higher World Carbon Price



**Annex 1 Carbon Reduction Target** 

### **Optimal Carbon Reduction Target Depends on Social Cost of Carbon**





- Energy Exporters are biggest losers at low targets (< 30%)
- US is the biggest loser at high targets (> 30%)
- China is the biggest winner for targets > 10%

### Conclusions

79 GTAD SC 2017 • Results are insensitive to re-allocation of regional carbon reduction targets

- Assuming worldwide trading of carbon emissions

- Major carbon reductions require very high world carbon prices
- Optimal carbon target highly dependent on actual social cost of carbon
- Interesting regional effects with increases in the price of carbon