
Can we reduce carbon emissions through supply mechanisms?

Nobuya Haraguchi and Dylan Carlson

Hypothesis and Background

- Many in the United States are opposed to the idea of carbon taxes and emission targets – that's too European!
- They also want to expand drilling for non-coal energy resources, especially natural gas and oil.
- One theory is that the U.S. can still achieve emissions reductions without carbon taxes if it expands its supply of cleaner, non-coal energy resources.
- What happens if U.S. coal production becomes less productive?

Carbon dioxide emissions from firms' usage of domestic product/

Purchases of domestic energy input for use by sector (CO2DF/VDFA)

Two representative sectors

	,	Other industries
Energy inputs	Agriculture	and services
2 Coal	2.2%	2.0%
3 Oil	0.0%	0.3%
4 Gas	0.5%	0.5%
5 Oil_pcts	0.2%	0.2%
6 Electricity	0.0%	0.0%

T Boone Pickens is talking about windmills, but he's dreaming of natural gas.

Reminder of original experiment

- Four industrialized regions set emissions targets, with endogenous carbon tax rates.
- No trade of emissions in this scenario.
 - i.e. carbon taxes must drive emissions reductions.
- Emission reductions occur. For the United States, a heavy reliance on coal and relatively modest emissions reduction targets resulted in an easy emissions reduction compared to other regions (for example, Japan).

	Overall	Emissions	Real	
	emissions	reduction	carbon tax	
Region	m tonnes	%	required \$	
USA	1649.1	-17*	67.74	
EU27	1079.2	-17*	90.04	
EEFSU	649.5	1.56	0	
JPN .	298.8	-30*	248.21	
RoA1	284.4	-40*	275.96	
EEx	883.2	1.63	0	
CHN	1199.7	0.42	0	
IND	288.8	0.74	0	
ROW	712.3	1.53	0	

^{*} Indicates that this was set in stone by the shock to the exogenous gco2q variable.

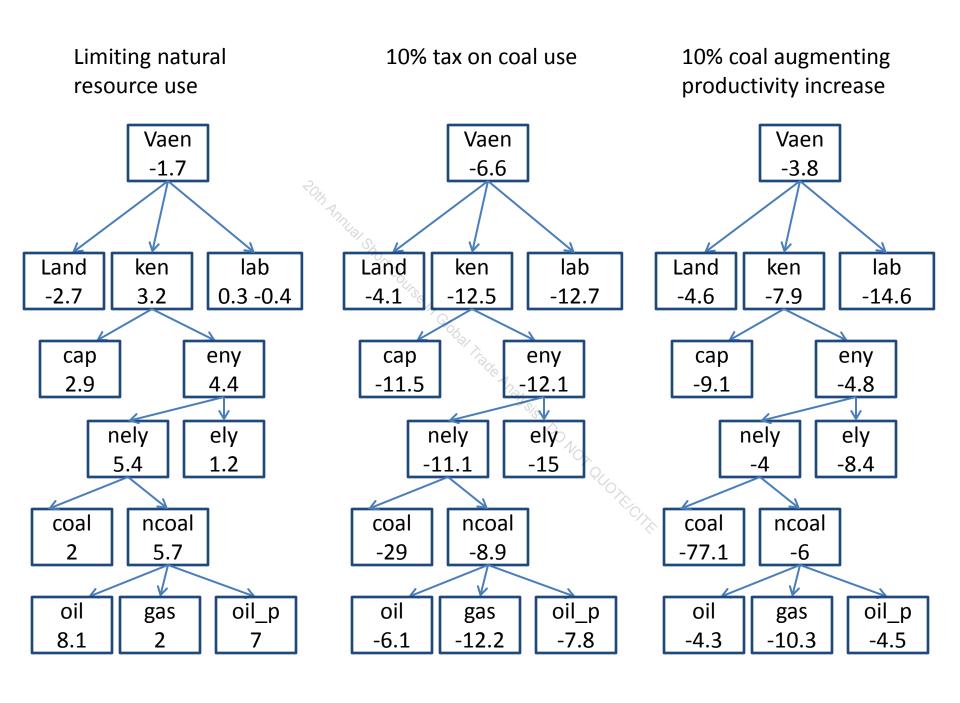
U.S. non-coal supply boom!

- Good news for the USA! As the result of a variety of events coinciding with the election of T-Boone Pickens for President --- removal of pesky government regulations, drilling in the Arctic, increased access to natural gas reserves under shale, and improved production technologies --- non-coal energy production has increased by roughly 10 to 40 %!
 - But we're not paying taxes on carbon. Any kind of emissions reduction is a perk. Those Europeans can do what they want.

			4/	Shore						
Region	notr	Where productive use of natural resources by non-coal energy sectors increase by				notr	Where productive use of natural resources by non-coal energy sectors increase by			
		0% (base)	10%	20%	40%		0% (base)	10%	20%	40%
		Emis	ssions chan	ge %	9/7		Real carbon tax per region			
USA	-17	0.68	1.19	1.61	2.28	67.74	0	0	0	0
EU27	-17	-17	-17	-17	-17	90.04	87.83	88.45	89.01	89.97
EEFSU	1.56	1.27	1.35	1.42	1.53	0	0	0	0	0
JPN	-30	-30	-30	-30	-30	248.21	243.96	245.23	246.39	248.43
RoA1	-40	-40	-40	-40	-40	275.96	272.4	272.87	273.37	274.38
EEx	1.63	1.17	1.3	1.41	1.61	0	(°) 0	0	0	0
CHN	0.42	0.33	0.34	0.35	0.36	0	0	0	0	0
IND	0.74	0.55	0.58	0.61	0.66	0	0	0	0	0
ROW	1.53	1.16	1.26	1.35	1.5	0	0	0	0	0

- Well, unfortunately the sign is positive. U.S. carbon emissions actually increased as a result of higher domestic production of cleaner fuel types.
- Interestingly, the U.S. refusal to institute a carbon tax resulted in lower carbon taxes necessary for other Annex 1 countries to meet their targets.

Welfare impacts of non-coal supply boom


- U.S. tot in 40% scenario driven by high domestic prices of other industrial goods and services
- This is in turn driven by increase in the price of the energycapital nest.

	region	Where productive use of natural resources by non-coal energy sectors increase by						
		0% scenario		40% scenar	io			
		u	tot	u	tot			
	USA	0.03	0.13	0.19	0.44			
	EU27	-0.16	0.13	-0.12	0.18			
15	EEFSU	-0.73	-0.81	-1.02	-1.18			
	JPN	-0.43	0.76	-0.41	0.93			
	RoA1	-0.99	0.03	-1.05	-0.15			
El	EEx	-0.39	-0.96	-0.63	-1.52			
	CHN	-0.01	0.01	0.01	0.11			
	IND	0.15	0.3	0.26	0.58			
	ROW	0.07	0.06	0.11	0.14			

What would be the better way to reduce the use of coal in the US?

- Make natural resource less available for coal production
- Tax on use of coal
- Increase coal augmenting productivity

	Base Royanni		Limiting natural resource use in the coal sector		10% tax on coal use		10% coal augmenting productivity increase	
	emission	u	emission	u	emission	u	emission	u
USA	0.68	0.03	0.5	0.02	-1.00	0.03	-0.6	0.068
EU27	-17	-0.16	-17	-0.16	-17	-0.15	-17	-0.155
EEFSU	1.27	-0.73	1.27	-0.73	1.28	-0.73	1.26	-0.728
JPN	-30	-0.43	-30	-0.43	-30	-0.43	-30	-0.432
RoA1	-40	-0.99	-40	-0.99	-40	-0.99	-40	-0.986
EEx	1.17	-0.39	1.17	-0.39	1.17	-0.39	1.16	-0.391
CHN	0.33	-0.01	0.33	-0.01	0.34	-0.01	0.33	-0.012
IND	0.55	0.15	0.54	0.15	0.55	0.15	0.56	0.151
ROW	1.16	0.07	1.15	0.07	1.16	0.07	1.15	0.068

