Green Growth, Market Failures, and Technological Change

Robert Stavins

Albert Pratt Professor of Business and Government Director, Harvard Environmental Economics Program John F. Kennedy School of Government, Harvard University

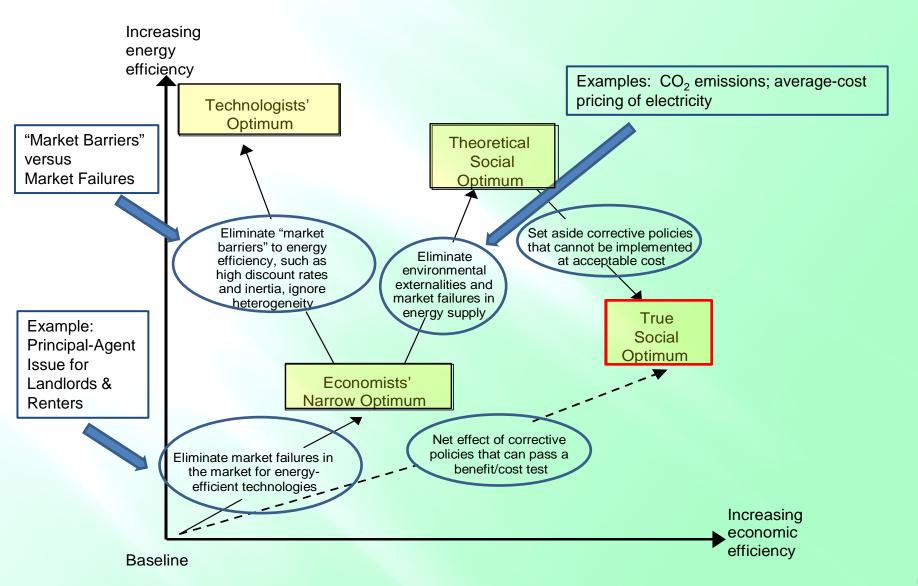
15th Annual Conference on Global Economic Analysis New Challenges for Global Trade and Sustainable Development World Trade Organization & Centre International de Conférences Genève Geneva, Switzerland, June 27-29, 2012

What's Green Growth?

- World Bank workshop in Mexico City (Jan 2012) many presentations
 - Sustainable Development (20-30 years)
 - Maximizing social welfare subject to due consideration of intra- and intergenerational distributional equity (50+ years)
 - Is "GG" no more than re-packaging of pre-existing concepts?
- No, it's more than that, because "green growth" the phrase is used by important political bodies (OECD, UNEP, UN RIO+20, Korea, etc.)
 - A new phrase to organize social goals & policies, or at least to name them (That's fine with me over my "pay grade" to question)
- So, I accept green growth as being *defined politically, not economically*
 - This does not denigrate or diminish GG
 - Rather, it elevates it, because as we all know
 - Political language trumps economic jargon
 - Political discourse is more important than economic discourse

Political Meaning of Green Growth

- United Nations: "Green Growth is the process of greening a conventional economic system and a strategy to arrive at a green economy."
 - "Green Economy can be defined as an economy where economic prosperity can go hand-in-hand with ecological **sustainability**."
- OECD: "Green growth means fostering economic growth and development, while ensuring that natural assets continue to provide the resources and environmental services on which our well-being relies."
- So, "green growth" is indeed a new phrase for "sustainable development"
- We then need to ask whether green growth is:
 - Nothing more nor less than *addressing* ordinary "market failures," including environmental externalities, plus equity? ... or ...
 - An activist call to coordinate growth & environmental policies? ... or ...
 - A *conviction* that green policy is not only good for broadly-defined welfare, but for narrowly-defined GDP growth?
- In all 3 cases, green growth is tightly linked with technological change.


For green growth, technological change with regard to *energy efficiency* is very important

- Why? Because global energy consumption is on a path to grow 50% over the next 25 years
 - Increased air pollution, greenhouse gas emissions, oil consumption, and energy prices
- And energy efficiency improvements are an important mechanism for decreasing energy consumption
- Key questions:
 - How do people & businesses make energy efficiency decisions?
 - What are the effectiveness, costs, and benefits of energy-efficiency policies?
- In the context of green-growth, a central issue is the "energy paradox" or "energy efficiency gap" (Shama 1983; Jaffe & Stavins 1994)

What is the "energy paradox" or "energyefficiency gap?"

- It is the *apparent* reality that energy-efficiency technologies that would pay off for adopters ... are nevertheless *not* adopted
 - Seminal studies by Hausman 1979, and Dubin & McFadden 1984
- Let's be clear about what adoption means
- Three stages of technological change (Schumpeter 1939)
 - *Invention* creation of new equipment (in the laboratory)
 - Innovation commercialization, i.e. taking it from the laboratory to the showroom floor
 - Diffusion gradual process of adoption (purchase) of product
 - [And, of course, *utilization* use of the adopted product]
- Energy paradox is mainly about diffusion, ...
 - ... but there are multiple interpretations of the "gap"

Alternative notions of the "energy-efficiency gap"

An Economic Perspective: Potential Explanations of the Paradox/Gap

• Market-Failure Explanations

• **Behavioral** Explanations

Model and Measurement Explanations

Potential Explanations of the Paradox/Gap: Market-Failure Explanations

- Information Problems
 - Principal-agent issues (e.g., renters/landlords Davis 2011)
 - Lack of information, asymmetric information (research on residential construction, Jaffe & Stavins 1995; Palmer *et al.* 2011)
- Energy Market Failures
 - Externalities environmental, security (Krupnick, et al. 2010)
 - Average-cost electricity pricing (Joskow 1976; & others)
- Capital Market Failures
 - Liquidity constraints
 - Particularly relevant in developing countries
- Innovation Market Failures
 - R&D spillovers due to public-good nature of information (evidence from patent studies by Griliches 1992; Jaffe 1998; Popp; & others)

Potential Explanations of the Paradox/Gap: Behavioral Explanations

- Inattentiveness/salience issues
 - Electricity billing (Allcott; Mullainathan; Wolfram; Greenstone; & many others)
 - Water billing practices (Olmstead, Hanemann, & Stavins 2007)
 - Regulations may increase effects of prices (Newell, Jaffe, & Stavins 1999)

- Bounded rationality, heuristic decision-making
 - Do consumers make choices on basis of NPV?
 - Rules-of-thumb
 - What about firms?

Potential Explanations of the Paradox/Gap: Model and Measurement Explanations

- Unobserved costs of adoption
 - An explanation of "negative costs" in the McKinsey cost curve (2009)?
- Product characteristics/attributes
 - Hedonics: products as a bundle of attributes
 - First-generation compact fluorescent light bulbs: color & noise
 - CFLs: size, shape, dimmers, etc.
- Heterogeneity in demand across potential adopters
 - Griliches (hybrid corn, 1957; Hausman and Joskow 1982)
 - Ubiquitous phenomenon with virtually all new technologies
- Uncertainty (real, not informational)
 - Future energy prices (theory Dixit & Pindyck 1994)
 - Empirical analysis (home improvements, Hassett and Metcalf 1994)

Any Policy Implications from Economic Research?

- What about *conventional*, command-and-control regulations?
 - Major effect is to *remove* some technologies from the market (examples: CAFE standards, energy-efficiency standards)
- What about *subsidies* as a diffusion (adoption) policy?
 - Can provide perverse incentive to *increase* energy use (rebound effect)
 - Require large public *expenditures* per unit of effect (infra-marginal units)
- Multiple market failures in climate change context, environmental externality and public-good nature of information generated by R&D
 - Pricing of externality is necessary, but not sufficient
 - Direct technology policy is *necessary, but not sufficient*
- Major Implications of Economic Research:
 - Innovation & diffusion respond to market incentives (price signals)
 - But multiple market failures clarify the case for combining pricing (tax or CAT) policies with broader-based public support for technology innovation

Good News for Economists

- More Research is Needed!
- Key Research Problem
 - Bricks incentive structure for academic researchers
 - Walls not very sound
 - House the interests and needs of policy makers
- What does existing evidence tell us when assembled?
 - Where are there inconsistencies?
 - What are the most important knowledge gaps?
- This will produce a substantial agenda for research, ...
 - ... and for communication and action

For More Information

Harvard Environmental Economics Program www.hks.harvard.edu/m-rcbg/heep/

Harvard Project on Climate Agreements www.belfercenter.org/climate

Blog: An Economic View of the Environment http://www.robertstavinsblog.org/

www.stavins.com