HETEROGENEOUS FIRMS, HETEROGENEOUS MODELS

J. Peter Neary
University of Oxford, CEPR, and CESifo

GTAP 18th Annual Conference on Global Economic Analysis
Melbourne, Australia
June 17, 2015

This research has been supported by the European Research Council.
Models of heterogeneous firms: What have we learned? [Melitz (2003)]

1. Selection effects
2. Competition effects
3. Matching the size distribution of firms
4. Superstar firms
Background

Related Literature

1. **Selection effects:**

2. **Competition effects:**
 - ZKPT (2013), Bertoletti-Epifani (2014)
 - Alternatives to CES:
 - Bulow-Pfleiderer: Atkin-Donaldson (2012)
 - QMOR: Feenstra (2014)

3. **Matching the size distribution of firm sales:**
 - Mixture of thin- and fat-tailed Pareto: Edmonds et al. (2012)

4. **Superstar Firms in Oligopoly**
 - Neary (2010), Parenti (2013)
Outline

1. Selection Effects
2. Competition Effects
3. A Firm’s-Eye View of Demand
4. Matching the Size Distribution of Firms
5. Superstar Firms and Market Structure
6. Conclusion
Outline

1. Selection Effects
2. Competition Effects
3. A Firm’s-Eye View of Demand
4. Matching the Size Distribution of Firms
5. Superstar Firms and Market Structure
6. Conclusion
Which Firms Export?

- More productive firms select into exporting
- Very robust result: Not sensitive to CES
 - Requires only that ex post profits π are decreasing in c
- Counter-examples can be explained in other ways: e.g., Lu (2011)

\[\Pi^E = \pi(t,c) - f_E \]
Exports versus FDI

\[\Pi^E = \pi(t,c) - f_E \]

\[\Pi^F = \pi(0,c) - f_F \]

Which Firms Export and Which Engage in FDI?

\[
\begin{align*}
\Pi &= \Pi^F - f_F C^{1-\sigma} - f_E C^{1-\sigma} \\
\Pi^E &= \Pi^E - f_F C^{1-\sigma} - f_E C^{1-\sigma}
\end{align*}
\]
First- and Second-Order Selection Effects

- Second-order selection effects less robust
 - Only guaranteed if Π^F is steeper than $\Pi^E \iff \pi_c(c, 0) < \pi_c(c, \tau)$
 - i.e. $\pi_c(c, \tau)$ supermodular in $\{c, \tau\} \iff \pi_{c\tau} > 0$
 - \iff Elasticity of output with respect to marginal cost (MCEO) > 1
Selection into FDI by large firms requires $\text{MCEO} > 1$

- **CES:** $\text{MCEO} > 1$: 10% fall in $c \Rightarrow > 10\%$ rise in output
 - So more efficient firms have higher profits when they engage in FDI
- **Linear demands:** $\text{MCEO} < 1$ for larger firms: Reverse selection effects
- **“CEMR” demands:** $\text{MCEO} = 1 \Rightarrow$ No selection effects

(a) CES

(b) Linear

(c) CEMR = 1
Outline

1. Selection Effects

2. Competition Effects
 - Two Kinds of Competition Effects
 - Globalization as a Two-Edged Sword

3. A Firm’s-Eye View of Demand

4. Matching the Size Distribution of Firms

5. Superstar Firms and Market Structure

6. Conclusion
Two Kinds of Competition Effects

- Competition Effects of Globalization:
 1. Squeeze on markups
 2. “Matthew Effect” on Profit Profile
 - “To those who have, more shall be given”

- Both occur IFF demand is subconvex:
 1. Squeeze on markups:
 - \(m \equiv \frac{p}{c} = \frac{\varepsilon(x)}{\varepsilon(x) - 1} \)
 - \(m \) increasing in \(x \) IFF \(\varepsilon \) is decreasing in \(x \)
 - \(\Rightarrow \) \{ Cross-Section: Larger firms have higher markups \}
 \{ Time Series: Globalization squeezes incumbents’ markups \}
 2. “Matthew Effect” on Profit Profile
Globalization as a Two-Edged Sword

Effects of globalization on every firm’s profits (including the threshold firm’s):

1. Direct impact: Market Expansion
 - Raises its profits \Rightarrow Threshold productivity tends to \uparrow

2. Indirect impact: Competition
 - Raises all firms’ profits \Rightarrow Increases competition
 \Rightarrow Reduces profits of marginal firm
 \Rightarrow Threshold productivity tends to \downarrow

3. The Matthew Effect with Subconvexity:
 \[\hat{\pi}_i = \left(1 - \frac{\varepsilon_i}{\bar{\varepsilon}}\right) \hat{k} \]
 - The direct, market expansion, impact dominates for larger firms
 - The indirect, competition, impact dominates for smaller firms
 - The threshold firm ceases to be profitable and drops out
 - The average productivity of exporters rises
The Matthew Effect of Globalization

Rank firms by their productivity

Export profits are increasing in productivity

So: More productive firms select into exporting
The Matthew Effect of Globalization

- Large firms expand
- Smaller firms contract, some exit
- On average, exporters become more productive
Outline

1. Selection Effects
2. Competition Effects
3. A Firm’s-Eye View of Demand
4. Matching the Size Distribution of Firms
5. Superstar Firms and Market Structure
6. Conclusion
Perceived inverse demand function:

\[p = p(x) \quad p' < 0 \]

Two key demand parameters:

1. **Slope/Elasticity:**
 \[\varepsilon(x) \equiv -\frac{p(x)}{xp'(x)} > 0 \]

2. **Curvature/Convexity:**
 \[\rho(x) \equiv -\frac{xp''(x)}{p'(x)} \]
For a monopoly firm:

- First-order condition:
 \[p + xp' = c \geq 0 \quad \Rightarrow \quad \varepsilon \geq 1 \]

- Second-order condition:
 \[2p' + xp'' < 0 \quad \Rightarrow \quad \rho < 2 \]
In general, both ϵ and ρ vary with sales.

Exception: CES/iso-elastic case:

- $p = \beta x^{-1/\sigma}$
- $\Rightarrow \epsilon = \sigma, \quad \rho = \frac{\sigma+1}{\sigma} > 1$
- $\Rightarrow \epsilon = \frac{1}{\rho-1}$

Cobb-Douglas: $\epsilon = 1, \rho = 2$; just on boundary of both FOC and SOC.
$p(x)$ is subconvex at x^0 IFF:
- $p(x)$ is less convex than a CES demand function with the same elasticity: $\rho > \frac{\epsilon + 1}{\epsilon}$
- ε is decreasing in sales:
 - $\varepsilon x = \frac{\varepsilon}{x} [\rho - \frac{\epsilon + 1}{\epsilon}]$

“Globalization” $[x \downarrow]$ leads to competition effects $[\frac{p}{c} \downarrow]$
- Because the mark-up is decreasing in elasticity: $\frac{p}{c} = \frac{\varepsilon}{\varepsilon - 1} = 1 + \frac{1}{\varepsilon - 1}$
Lower-c firms choose FDI IF:
- $\pi(t, c)$ supermodular in \{t, c\}
- \Leftrightarrow MCEO > 1
- $\Leftrightarrow \varepsilon + \rho > 3$

Clearly: SupC \Rightarrow SupM
Can We Have Subconvexity and Supermodularity?

- Demand functions represented in \(\{\varepsilon, \rho\} \) space by their Demand Manifold
- Most common demand functions are:
 - Subconvex \(\Rightarrow \) Competition effects
 - Submodular for high output \(\Rightarrow \) Reverse selection effects
Can We Have Subconvexity and Supermodularity?

- Demand functions represented in \{\varepsilon, \rho\} space by their Demand Manifold
- Most common demand functions are:
 - Subconvex \Rightarrow Competition effects
 - Submodular for high output \Rightarrow Reverse selection effects
- Exception: AIDS/Translog
Matching the Size Distribution of Firms

Outline

1. Selection Effects
2. Competition Effects
3. A Firm’s-Eye View of Demand
4. Matching the Size Distribution of Firms
5. Superstar Firms and Market Structure
6. Conclusion
Recall: The Canonical Model

Pareto Productivities + CES Demands → Pareto Sales
Matching the Size Distribution of Firms

Back ing Out Demands

Pareto Productivities + CES Demands → Pareto Sales

Pareto Productivities → ? ← Pareto Sales
Which Demands are Consistent with Pareto?

Proposition: Any two imply the third
CREMR Demands

- “CREMR”: “Constant Revenue Elasticity of Marginal Revenue”
 - MR=MC ⇒ ϕ = c^{-1} = (r')^{-1}
 - So: Constant elasticity of sales with respect to productivity
 \[p(x) = \frac{\beta}{x} (x - \gamma) \frac{\sigma - 1}{\sigma}, \quad 1 < \sigma < \infty, \ x > \gamma \sigma, \ \beta > 0 \]

- CES a special case: \(\gamma = 0 \) ⇒ \(p(x) = \beta x^{-1/\sigma} \)

- CREMR elasticity of demand: \(\varepsilon(x) = \frac{x - \gamma}{x - \gamma \sigma} \sigma \)

- “CREMR”:
 \[\hat{r}' = -\frac{1}{\sigma - 1} \hat{r} \]

- \(r(x) \equiv xp(x), \ r'(x) = p(x) + xp'(x), \ \hat{r} \equiv d \log r = \frac{dx}{r} \ (r \neq 0) \)
CREMR Demands: Pros and Cons

\[p(x) = \frac{\beta}{x} (x - \gamma)^{\frac{\sigma - 1}{\sigma}}, \quad 1 < \sigma < \infty, \quad x > \gamma \sigma, \quad \beta > 0 \]

Features of CREMR demands:

- A rich range of properties:
 - Nests CES: converges to CES as \(x \to \infty \)
 - Variable mark-ups: For any \(\gamma \neq 0 \)
 - Competition effects: “Subconvex” IFF \(\gamma > 0 \)
 - “Normal” selection effects: Profit function “supermodular” IFF \(\sigma \geq 2 \)

- Very different from standard demand functions
- Inconsistent with a choke price
- Utility function is analytic and can be simulated, but hard to work with
Matching the Size Distribution of Firms

CREMR Very Different from Other Demands

\[p(x) = \frac{\beta}{x} (x - \gamma)^{\frac{\sigma - 1}{\sigma}} \]

\[\Rightarrow \bar{\rho}(\varepsilon) = 2 - \frac{1}{\sigma - 1} \frac{(\varepsilon - 1)^2}{\varepsilon} \]

Compare CEMR Demand Manifolds
But, in practice, it is large firms that matter

- So far: Monopolistic competition
 - Firms heterogeneous in size ...
 - ... but qualitatively identical:
 - Infinitesimal: No market power
 - Probability of exit/death independent of productivity
- By contrast: Firms that dominate world trade are:
 - Super-large
 - Old
 - Multi-product
 - Multi-division
Outline

1. Selection Effects
2. Competition Effects
3. A Firm’s-Eye View of Demand
4. Matching the Size Distribution of Firms
5. Superstar Firms and Market Structure
6. Conclusion
Quantification is in vogue in international trade!

We have learnt so much from recent work on heterogeneous firms ...

- CES + Pareto a valuable and highly tractable workhorse
- But for many purposes we need alternatives
- Heterogeneous models: No single parametric functional form can capture all the features we would like

... And there is lots more to learn!

- Alternatives to CES?
- Alternatives to Pareto?
- Alternatives to monopolistic competition?
Thank you for listening. Comments welcome!

* The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013), ERC grant agreement no. 295669. The contents reflect only the authors’ views and not the views of the ERC or the European Commission, and the European Union is not liable for any use that may be made of the information contained therein.
Supermodularity and the MCEO

Sufficient condition for second-order selection effects:
- Π^F is steeper than Π^E
- $\Leftrightarrow \pi_c(c, 0) < \pi_c(c, \tau)$
- $\Leftrightarrow \pi_{c\tau} > 0$

Necessary and sufficient condition for $\pi_{c\tau} > 0$:
- $\pi(c, \tau) = [p(x) - \tau c]x$, \quad x optimal
- $\Rightarrow \pi_c = -\tau x$
- $\Rightarrow \pi_{c\tau} = -x - \tau \frac{\partial x}{\partial \tau} = -x \left(1 + \frac{c}{x} \frac{\partial x}{\partial c}\right)$
- $\Rightarrow \pi_{c\tau} > 1 \iff -\frac{c}{x} \frac{\partial x}{\partial c} > 1$