Can the cost burden of Kyoto be relieved through trade liberalization with non-Kyoto countries?

If so, what are the CO₂ emissions and economic implications?

Methodology - Decomposition

- KP and $TL = KP + TL + KP^*TL$
 - KP = Kyoto Annex 1 with emissions trading
 - TL = Annex 1 trade liberalization with non-Annex 1

KP*TL = (KP and TL) - KP - TL

- Hypothesis: carbon leakage to non-Kyoto countries through foreign production of non-CO₂ taxed products
- Products are taxed at point of demand (i.e. includes imports)
- US firms' share of total demand
 - Coal (1.0), oil (1.0), gas (0.9), oil products (0.7), electricity (0.8)

Experiment

- Shock: elimination of US import tariffs on non-CO₂ taxed tradables from non-Kyoto countries
 - Agriculture, Energy Intensive Industries, Other Industries and Services
- CO₂ emitting products: coal, oil, gas, oil products, and electricity

Summary Results

- Global emissions rise (319 MMTCO₂)
- Market price of CO₂ falls
 - Most Kyoto participants benefit from decline in average cost of emissions—not EEFSU
- Increase in energy intensive imports from non-Kyoto regions

Results – KP * TL Interaction

Welfare	KP & TL	KP	TL	KP * TL
1 USA	-25036.4	-18814.2	-6307.2	85.1
2 EU	-21225.0	-19048.0	-2304.3	127.4
3 EEFSU	20556.6	20855.4	-130.4	-168.4
4 JPN	-10695.0	-9731.0	-1032.2	68.1
5 RoA1	-12770.4	-11451.0	-1362.4	42.9
6 EEx	-13532.9	-15329.7	1652.8	144.0
7 CHIND	4914.8	611.2	4318.1	-14.6
8 RoW	10548.4	3330.8	7306.8	-89.2
Total	-47239.8	-49576.4	2141.3	195.3

•Global emissions rise (319 MMTCO2)

•Market price of CO2 falls

•Most Kyoto participants benefit from decline in average cost of emissions—not EEFSU

•Increase in energy intensive imports from non-Kyoto regions

Import Shares

	IMP shr	EEx	CHIND	Row
Agriculture	0.082	0.030	0.004	0.024
En_int_ind	0.141	0.010	0.006	0.013
Others	0.064	0.025	0.002	0.007

Import Tariffs (%)

	EEx	CHIND	RoW
Agriculture	12.53	10.25	12.48
En_int_ind	1.39	4.18	3.05
Others	1.70	5.75	4.21

Conclusions

- Trade liberalization benefits can be moderated or enhanced by Kyoto
- However, CO₂ leakage can result increased global emissions
- Interaction effects seem to exist and to depend on import shares and tariff magnitudes
- Interaction effects concerning the US are small
- Social welfare vs. GTAP welfare
- Future research opportunities

The GTAP- E Model

The 8 regions are:

United States European Union Eastern Europe and FSU Japan Oth. Annex 1 countries Net Energy Exporters China and India Rest of the World

The 8 sectors are:

Agriculture Coal Mining Crude oil Natural gas extraction Refined oil products Electricity Energy intensive industries Other industries and services

Special is the Production Nest for Energy Inputs!

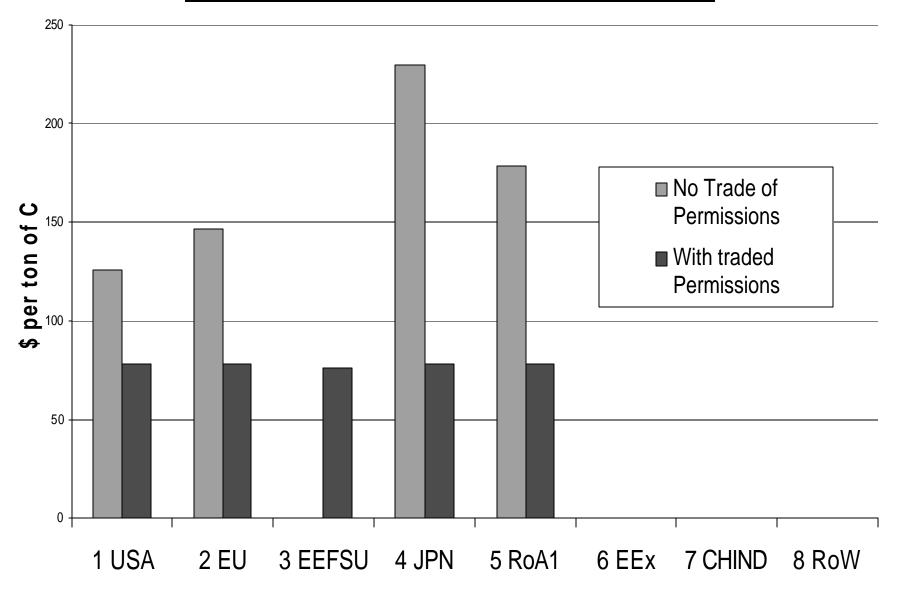
Core Experiments

- Kyoto without emissions trading
- Kyoto with emissions trading

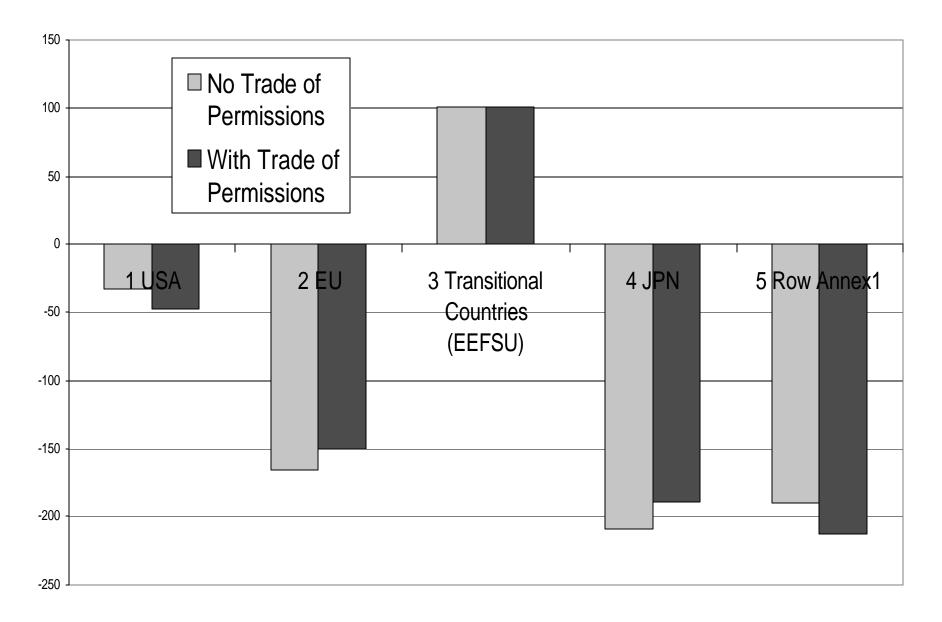
Shock: Reduce Carbon Emissions

US -36%

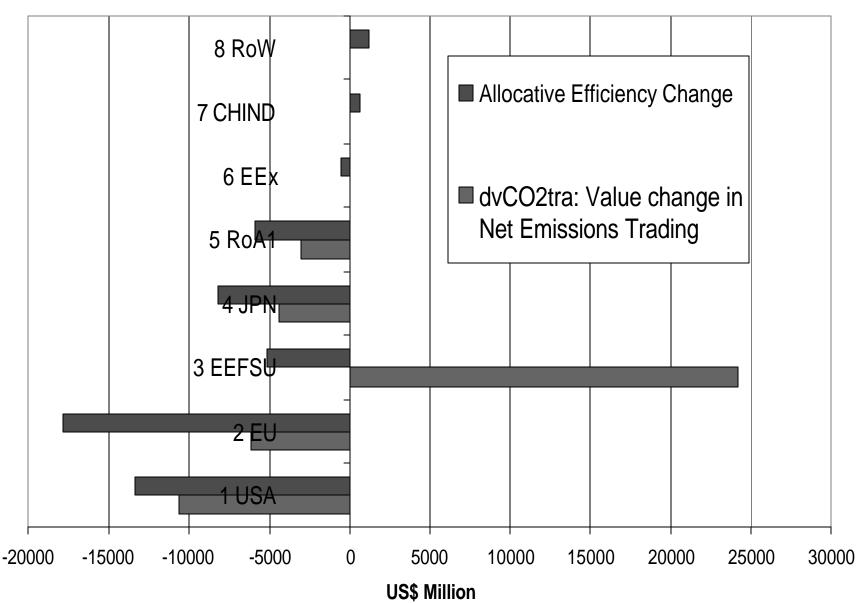
EU -22.4%

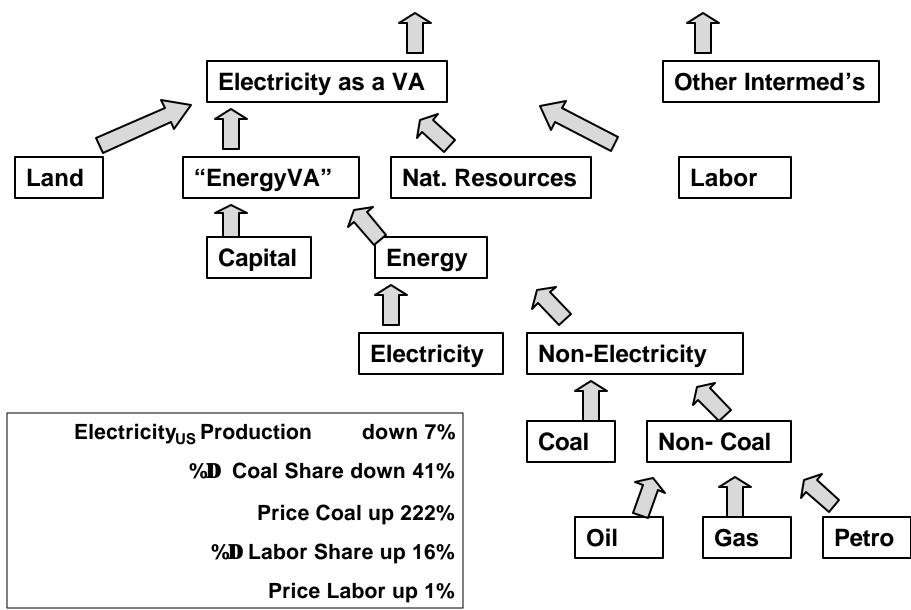

Japan -31.8%

RoAnnex1 -35.7%


Objective:

Find optimal CO2 Emissions Tax (endog)... ... for given (exog.) Reductions of CO2 output.


"Kyoto" Tax on Carbon Emissions by Region


Welfare Change per abated Ton of Carbon

Region's Adaption Process in Order to achieve Global Reduction

The Effects of a CO2 Tax in GTAPE

Shock: Kyoto Protocol with global trading

- Quotas identical to Kyoto Protocol
- Introduce international trade
- Economic theory suggests that by maximizing participation, total costs will be minimized
- Hypothesis: compared to the original Kyoto Protocol, we expect the permit price to fall - leading to a smaller EV loss

The permit market

• New sellers push price down – EEFSU loses out

Permit Flows (MtCO2) USA	World trading	A1 trading	Scheme	Permit Price (\$/tCO2)
USA	-343	-135		
EEFSU	201	307		
JPN	-86	-56	KP world trade	29.8
CHIIND	344	0	lidue	
GLOBAL VOLUME	648	307		

KP A1 trade

78.72

Output

• Energy outputs fall, but worldwide trading distributes the burden

	qo (%)	Coal	Gas	Oil Products
	USA	-21	-11	-7
World trading	EEFSU	-22	-9	-3
	JPN	-19	-9	-2
	CHIIND	-38	-18	-4
	USA	-38	-25	-17
A1 trading	EEFSU	-39	-19	-9
	JPN	-25	-20	-6
	CHIIND	-2	-1	2

• Buying countries get more permits for their dollar, and undertake less abatement at home. World total EV loss roughly halved.

	(million\$)	Trading Contribution	Alloc Contribution	
	USA	-10187	-2853	
World Trading	EEFSU	5957	-1089	
(-22297)	JPN	-2561	-2038	
	CHIIND	10159	-7246	
	USA	-10549	-13363	
A1 Trading	EEFSU	23764	-5202	
(-49576)	JPN	-4371	-8208	
	CHIIND	0	654	

CHIIND dominance of carbon market (1/2)

 Substitution elasticities in energy nests are constant across regions – look for other reasons:

						Τ	
	CO2 (MtCO2)						Ref
				Coal	Oil	Gas	Oil
USA	1499						
EEFSU	777	US	SA	54	18	17	13
JPN	337	EEF	SU	62	19	18	12
CHIIND	1081	JP	'n	41	18	11	4
		СНІ	ND	193	18	23	10
World Total	6170			r ooot f			

Large share of world emissions

Lower cost fuels, esp. coal

CHIIND dominance of carbon market (2/2)

• Energy use in firms gives more opportunity to abate

		Energy Intense Industries	Other Industries/Services
	US	47%	53%
electricity (as share of energy nest)	JPN	54%	61%
	CHIIND	43%	45%
	EEFSU	47%	46%
	US	53%	47%
fuels (as share of energy nest)	JPN	46%	39%
	CHIIND	57%	55%
	EEFSU	53%	54%
coal (as share of fuels nest)	US	3%	0%
	JPN	5%	0%
	CHIIND	16%	8%
	EEFSU	13%	4%

Kyoto Without the US

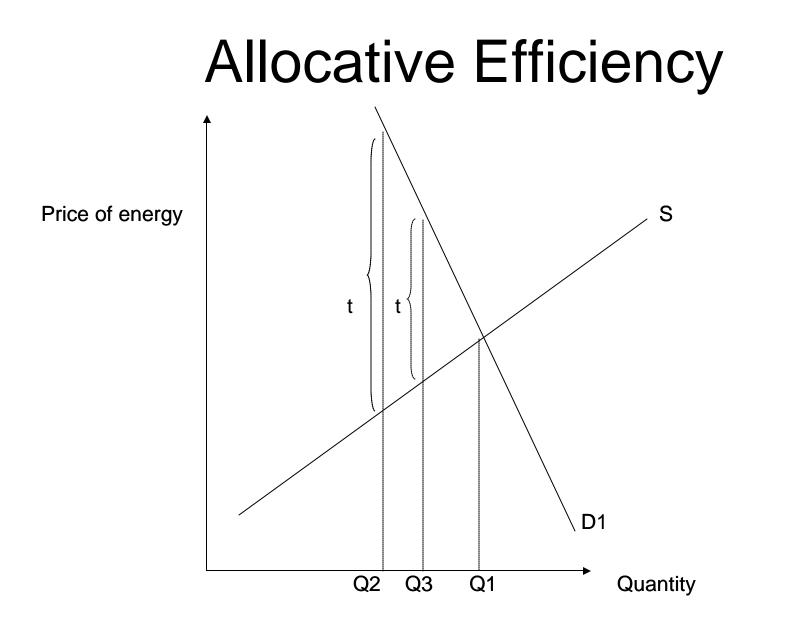
• Baseline:

Kyoto with all annex 1 regions trading emission permits.

• Extension:

The US opts out of Kyoto protocol. Remaining annex 1 regions implement existing Kyoto emission reduction targets.

Welfare Effects (\$M)


	With US	Without US
USA	-18,814	301
European Union	-19,048	-16,533
Former Soviet Union	20,855	9,942
Japan	-9,731	-7,264
Rest Annex 1	-11,451	-6,347
Net Energy Exporters	-15,329	-4,444
China & India	611	18
Rest of World	3,330	656
Total	-49,576	-23,670

Welfare Comparison: Baseline v Kyoto without US

	Carbon Trading	Allocative Efficiency	Terms of Trade	Total
USA	10,548	13,306	-4,578	19,115
European Union	1,001	4,699	-3,347	2,515
Former Soviet Union	-13,172	3,091	-746	-10,912
Japan	1,213	3,078	-1,978	2,466
Rest Annex 1	589	2,550	1,966	5,103
Net Energy Exporters	0	254	10,615	10,885
China & India	0	-480	-135	-592
Rest of World	0	-864	-1,705	-2,674
Total	180	25,635	89	25,906

Permit Trading

- "Hot Air": Former Soviet Union is seller of permits.
- US opts out of Kyoto: no longer trades permits.
 World demand for permits falls: Price
- Remaining of Annex 1 regions buy more.
 Emission reductions achieved by trading 1
- CO2 tax level required to achieve Kyoto target reduced.

Terms of Trade

• Baseline: international energy prices fall.

Annex 1 regions are net energy importers \longrightarrow terms of trade gain. Non-trading regions: net energy exporters \implies terms of trade loss.

• US opts out of Kyoto:

Fall in world energy prices reduced.

Terms of trade gain reduced for remaining annex 1 regions.