Biofuels Extension:

The Effect of Trade Assumptions on Land Use Change

> Jared Creason Medina Taylor

18th Annual GTAP Short Course Participants

Background

- Explore the Integrated World Market (IWM) vs. Armington Assumption
 - What happens if you relax the Armington Assumption for agricultural commodities?
 - What are the potential effects on land use change and CO₂ emissions in the U.S. and ROW?

Hypothesis

- Relaxing the Armingtons will
 - Increase the ability of the model to transmit the price shock externally
 - For the case of Ethanol mandates,
 - see price changes in ROW
 - consequential land use adjustments

<u>Methodology</u>

- Expand U.S. corn ethanol use in accordance with 2015 mandated levels
 – Output: 1.75BG → 2.75BG
- Economic Instruments
 - Tax on liquid transportation fuels
 - Subsidy on corn ethanol
- Assume cereal grain, other grains, oilseeds, sugarcane are perfectly substitutable on world market

<u>Results</u>

Graph 1. GHG emissions due to a 1 BGY increase in U.S. corn ethanol production (mill tCO_2)

Results cont'd

Table 1*. Change in harvested area (by crop) for the U.S.

	<u>Coarse</u> <u>Grains</u>		<u>Oilseeds</u>		<u>Sugarcane</u>		<u>Other</u> <u>Grains</u>	
Output (% change)	1.33	0.79	-0.4	-0.35	-0.1	-0.01	-0.65	-0.39
Yield (% change)	0.1	0.04	-0.04	-0.05	0.07	-0.02	-0.02	-0.01
Intensive Margin	0.21	0.12	0.09	0.04	0.12	0.07	0.06	0.03
Extensive Margin	-0.11	-0.08	-0.12	-0.09	-0.05	-0.04	-0.04	-0.03
Area (% change)	1.23	0.74	-0.38	-0.3	-0.17	-0.07	-0.66	-0.39
Harvested Area (per 1000 hectares)	450	273	-121	-96	-2	-1	-200	-114

*Armington values in regular text, IWM results in bold

Sensitivity Analysis

 How much variance is associated with the Land use CET parameter (ETRAE1)?
ETRAE1 = -0.2, choose [-0.1, -0.3]

Table 2. Simulated changes in harvested crop land area for the U.S. (per hectare)

Preliminary Conclusions

- GTAP is an ideal model for analyzing international land use changes resulting from biofuel policies
- Two factors in particular affect GTAP predicted responses
 - Armington Elasticities
 - CET structure of land use
- Relaxing both of these assumptions yields expected results
 - Armington: Increasing elasticity parameters results in increased land use change (LUC) estimates in ROW
 - CET: The LUC estimate is sensitive to values of this

Questions?

