GTAP-AEZ

Land use application of the GTAP Model

Group 4:

Sabin Ahmed

Jangho Choi

William Davis

Hoa Hoang

Padma Swaminathan

Lau Tambjerg

Presented by

The Gorgeous Tenacious Amusing Persons from the Asian-European Zone

About GTAP-AEZ

• GTAP-AEZ is a global economic commodity and trade model.

 Important for analyzing the environmental impacts of economic activities and policies, such as:

→Effect of crop productivity shocks or bio-fuel expansion on land use;

→Impact of agricultural productivity growth on global GHG emissions from land cover change;

Some key distinctions from the Standard Model (Hertel, 1997)

The GTAP-AEZ database and theoretical structure differs from the standard GTAP model \rightarrow includes additional elements to allow analysis of land use and emissions.

(1) Allows for land to be a heterogeneous endowment:
 → regional land endowment split into Agro-Economic Zones (AEZs) that differ by growing period and climatic zones.

(2) Recognizes that land may not be freely mobile between alternative uses:

→ mobility of land is constrained by a Constant Elasticity of Transformation (CET) frontier;

→ different returns to land in alternative uses

(3) Allows for changes in crop yields by extensive and intensive margins.

(4) Allows for changes in emissions from different land use.

Land use application based on Villoria *et al.* (2013)

Scenario 1: Regional productivity shock

- IDN experience productivity growth rates of 39%;

 Productivity in other crops within IDN and Rest of the World (ROW) assumed unchanged.

- Key Result:

- \rightarrow Regional deforestation;
- \rightarrow Global forest reversion;
- \rightarrow Lower global emissions.

Scenario 2: Global productivity shock

- IDN experience productivity growth rates of 39%;
- Productivity shocks to other crops within IDN and Rest of the World (ROW) according to estimates of Fischer *et al.* (2012).

- Key Result:

- → Net forest reversion locally and globally;
- → Net reduction in emissions locally and globally.

The Land Policy and Productivity Shock Paradox

Sabin Ahmed Jangho Choi

Introduction

Objective:

- Extend the Villoria *et al.* Model to explore the local and global land use impact of a regional productivity (TFP) shock in oil palm production under different land regulations in:
 - Indonesia and Malaysia (IDN)
 - United States (USA)
- Explore how LOCAL and GLOBAL land use impacts differ when technological change occurs in a small developing country versus a larger developed economy.

Two experiments:

- (1) What happens to land use after a TFP shock under more restrictive land policy in IDN versus USA?
- (2) What happens to land use after a TFP shock under more relaxed land policy in the IDN versus the USA?

Experiment

Land policy regulation: Use changes in the regional Elasticity of Transformation parameter (ETRAE) for sluggish endowments (land) to mimic land policy restrictions and relaxation.

Experiment 1:

(1) Decrease ETRAE (magnitude) → Restrict mobility of land across different uses (forestry; crop land; pasture)

- (a) Shock TFP in the oil palm sector in IDN by 39%;
- (b) Shock TFP in the oil palm sector in USA by 39%;

Experiment 2:

- Increase ETRAE (magnitude) → Relax mobility of land across different uses (forestry; crop land; pasture)
- (a) Shock TFP in the oil palm sector in IDN by 39%;
- (b) Shock TFP in the oil palm sector in USA by 39%;

The Baseline (Villoria et al., 2013)

Baseline results - TFP Shock in IDN					
aoall ("OSD", "IDN") = 39%					
ETRAE = -0.5 (ba	seline parar	meter value	e)		
IDN Output Exports Cover (Δ%) (Δ%) (Δ1,000 hec					
Domestic Changes	$\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\downarrow\downarrow\downarrow$		
Global Changes	$\rightarrow \rightarrow \rightarrow$	N/A	$\uparrow\uparrow\uparrow$		

IDN Government decides to protect their forests \rightarrow implements restrictions on land use.

Experiment 1: TFP Shocks under land use restriction

Baseline resul	ts - TFP S	Shock in	IDN	Restrictive Poli	cy & TFP	Shock in	IDN
aoall ("OSD", "IDN") = 39%		aoall ("OSD", "IDN") = 39%					
ETRAE = -0.5 (ba	aseline para	ameter valu	ıe)	ETRAE = -0.1	(new param	eter value)	I
IDN	Output (Δ%)	Exports (∆%)	Forests (∆1,000 hec)	IDN	Output (Δ%)	Exports (∆%)	Forests (∆1,000 hec)
Domestic Changes	39	240	-118	Domestic Changes	39	240	-40.9
Global Changes	0.1	N/A	499	Global Changes	0.1	N/A	340

Experiment 1: TFP Shocks under land use restriction

Baseline results - TFP Shock in IDN Restrictive Policy & TFP Shock in IDN aoall ("OSD", "IDN") = 39% aoall ("OSD", "IDN") = 39% **ETRAE = -0.5** (baseline parameter value) ETRAE = -0.1 (new parameter value) **Forests** Forests IDN Outputs Exports (Δ 1,000 IDN Outputs Exports (Δ 1,000 hec) hec) **Domestic Changes** -118 -40.9 **Global Changes** 499 340

Negative spillover effect on other regions! IDN achieved the policy objectives without sacrificing economic activity.
However, the world worse off due to the land regulation in IDN. **Question:** Does IDN lose its forest because it's a small developing country-pair?

Hypothesis 1: Yes! Larger and developed economy expected to experience relatively less negative impact on forestry.

TFP Shock in the US

aoall ("OSD", "USA") = 39%

ETRAE = -0.5 (baseline parameter value)

USA	Outputs	Exports	Forests	
Domestic Changes	48	92	-400	
Global Changes	-1		1323	

Same result of TFP shock in the USA \rightarrow Output and exports increase.

→ Greater deforestation in the US but world better off in terms of land preservation as US oil palm floods the world market and production of palm oil falls in ROW.

Negative large country effect on world output.

Productivity shock and increase in output in the US → US oil palm exports flooding the market → Global production of oil seeds decline by 1 %.

TFP Shock in USA aoall ("OSD", "USA") = 39% ETRAE = -0.5					
USA	Output	Exports	Forests		
Domestic Changes	48	92	-400		
Global Changes	-1		1323		

Restrictive Policy & TFP Shock in IDN				
aoall ("OSD", "USA") = 39%				
ETRAE = -0.1				
USA	Output	Exports	Forests	
Domestic Changes	48	92	-182	
Global Changes	-0.7		1201	

Question 2: Why do the two regions still loose their domestic forest?

TFP Shock to palm oil production in the US under more restrictive land policy not likely to be effective in preserving forest land because:

→ US export share of oil palm in world exports much larger (27%) compared to IDN (1.3%) and initial land transformation elasticity already pretty inelastic at -0.5%

What if we increase the elasticity of transformation of land as a proxy for relaxation of land preservation policy i.e. change ETRAE from -0.5 to -5?

TFP Shock in IDN					
IDN Output Exports Fore					
Domestic Changes	39	240	-118		
Global Changes	0.1		499		

Relaxed Polic	y & TFP	Shock in	IDN
----------------------	---------	----------	-----

IDN	Output	Exports	Forests
Domestic Changes	39	240	-205
Global Changes	0.1		456

TFP Shock in US			Relaxed Policy & TFP Shock in US				
USA	Output	Exports	Forests	USA	Output	Exports	Forests
Domestic Changes	48	92	-400	Domestic Changes	48	92	104
Global Changes	-1		1323	Global Changes	0.7		1525

Restrictive Land Policy

Marginal land allocation for oil palm	Before Policy	After Policy	Before Policy	After Policy
Local effects	Intensive	Intensive	Extensive	Extensive
IDN - TFP shocked	39.8	39.3	0.1	0.1
US - TFP shocked	39.5	39.5	1.5	1.5

Relaxed Land Policy

Marginal land allocation for oil palm	Before Policy	After Policy	Before Policy	After Policy
Local effects	Intensive	Intensive	Extensive	Extensive
IDN - TFP shocked	40	39	0.1	0.1
US - TFP shocked	40	39	1.5	6.6

TFP Shock					
IDN	Forests	Cropland	Pasture		
Domestic Changes	-118	68	50		

Relaxed Poli	cy & TFP	Shock
---------------------	----------	-------

IDN	Forests	Cropland	Pasture
Domestic Changes	-205	127	773

	TFP Shoo	:k		Relaxed	Policy 8	& TFP Shock	ζ.
USA	Forests	Cropland	Pasture	USA	Forests	Cropland	Pasture
Domestic Changes	-400	141	259	Domestic Changes	104	242	-345

TFP Shock						
IDN	Forests Cropland Pasture					
Domestic Changes	-2.7	-0.8	2.0			

Relaxed Polic	y & TFP Shock
----------------------	---------------

IDN	Forests	OSD	Pasture
Domestic Changes	-1.1	-0.9	-0.3

TFP Shock						
USA	Forests Cropland Pasture					
Domestic Changes	-0.8	7.1	0.3			

Relaxed Policy & TFP Shock					
USA	Forests	Cropland	Pasture		
Domestic Changes	-3.1	-7.5	-2.5		

Climate change, food security and bioenergy policies

William Davis

Hoa Hoang

When Obama met Ban Ki-moon

...to discuss climate change.

Staff assignments ("quick and dirty" answers)

- William: What are impacts of increased emissions on Africa's ability to feed itself?
- Hoa: Impacts of US government's biofuel mandate on GHG emissions.

What are impacts of increased emissions on Africa's ability to feed itself?

Experiment

- Research question: What are impacts of increased emissions on Africa's ability to feed itself? (GTAP-AEZ includes emissions)
- How to approach?
 - Already have forecasts to 2021 > go beyond to add value
 - Update data (GDP (thru aoreg swap) & population other variables too many interactions & what to swap?
- See predicted emissions from this model > feed through literature to get impacts on productivity
- Re-shock the result of 1st simulation using productivity shock resulting from emissions (can't incorporate as feedback directly in existing model)

Implementation

- Data update challenges: regions in download database don't match GTAP – self-aggregate; ensure same base year for data for growth factor. Intensive!
- Results of 1st simulation problematic caused reduction in factor uses (forced change through *aoreg* only)
- > Test with 1 country first before computing regional GDP for all - reduce to SSA 2004-7 update

Phase 2 – emissions impact

- 'Emissions impact' literature focuses on direct effect through carbon sequestration in soil
- > Search for climate change impact instead
- In fact, forecasts of productivity evolution available (Lobell & Gourdji, 2012)
- Worst case scenario shock -2.272% to worldwide land productivity
 - Result: globally -0.6% in ag. Production by weight
 - SSA GDP \downarrow crop production \uparrow 0.2% relative to baseline

Results & interpretation

- Small increases in production across all land types except one relative to benchmark
- + \$1.1b trade balance in ag. products
- Increased trade deficit in manufactures & services
- WHY? Difficult to explain intensity of land use preshock does not predict post-shock trade patterns incl. ag. trade balance(despite HOS)
- Shock on SSA alone ag. Production down
- Conclusion more work needed!!!!

Impacts of US government's biofuel mandate on GHG emissions.

US biofuel mandate

Expectations

Biofuel mandate ->

Demand for corn (as the main input for biofuel production) ->

Corn price ->

Corn production ->

Cropland ->

GHG emissions (???)

Reality

- No biofuel sector -> assume biofuel is aggregated in chemical industry ("crp")
- No corn as a single commodity. In the model corn is aggregated in Coarse Grain ("gro") category -> Shock Coarse Grain sector as a whole.
- Assume that due to a change in technology, chemical industry demands for more coarse grains to increase its output.
- What to shock?

-> First, forcing qo to be exogenous and technical change is adjusted accordingly.

swap afall("gro","crp","USA")=qo("crp","USA")

Experiment 1: Increase coarse grain output -> price goes down -> need some increase on the demand side

Experiment 2: Increase chemical output -> VDFA("gro","crp","USA") turns negative.

Solution:

Do we come to a consensus?

Border tax adjustment in the EU

Padma Swaminathan

Lau Tambjerg

Aim

- Large LUC emissions associated with palm oil
- WTO enables non-discriminatory tariffs to prevent carbon sinks
- Implementation of a border tax adjustment for CO2 emissions from LUC outside of the EU
- What tariff rate should the EU implement?

Tariff based on the EU-ETS

- Tax based on current price of CO2 emission from the EU ETS
 - 9 USD/ton CO2eq
 - Leading to a tariff of 13.9% on imports of vegetable oil from Indonesia/Malaysia to the EU27
 - This tariff lead to increased world emissions:
 - Indonesia/Malaysia emission reduction
 - EU increased emission

3.8 mil. Ton CO2eq10 mil. Ton CO2eq5 mil. Ton CO2eq

- Which tariff can reduce emissions?
 - First, elimination of Import Tariff on VOL by EU27 (base data tms is 6%)
 - Then, progressively increasing Tariffs to about 25%

CO2 emissions and tariff increases

CO2 emissions and tariff increases

Elimination of Import Tariff Output Expansion - Increased Import Demand

qo	1 BRA	2 CAN	4 EU27	5 IDN
32 vol	-0.38	0.14	-1.32	2.38
32 osd	-0.03	0	-0.04	0.37

qxs[*IDN*]	1 BRA	2 CAN	4 EU27	5 IDN
11 vol	-2.89	-2.73	44.58	0.57

Elimination of Import Tariff Output Expansion - Increased Import Demand

- OSD increases by 0.37%
- Recall: Base Application is a TFP increase Yield Increases due Intensive Margins & Extensive Margins Base Application is a Technology Shock.
- Extension As import tariff is removed, most of the increase in OSD comes from forest land diversion about 37 m Ha
- Vs EU27, CAN, Brazil forestry land use increases.

Elimination of Import Tariff Land Use Change

60 40 20 0 -20 -20 -40 -60 **I** 1 frs **3** cropland **4** grazeliv

LAND USE CHANGE (in million hectares)

Increase in tariffs (25%)

Impacts originate in different regions:

					Indonesia and	
	Unit	Brazil	Canada	EU	Malaysia	Latin America
Emissions	mil. Ton					
(total)	CO2eq	0.52	1.09	1.37	-2.72	0.011
Export change						
(vol)	mil. USD	101.5	0.8	344.4	-1148.8	119.3

Change due to substitution effect:

	Unit	Brazil	Canada	EU	Indonesia and Malaysia	Latin America
Expansion	% change	-1.71	-1.71	-1.71	-1.71	-1.71
Substitution	% change	6.61	6.98	6.5	-102	6.82

Increase in tariffs (25%)

Increase in exports of vegetable oils lead to an increase in required oil seed and output in this sector:

% change	Brazil	Canada	EU	Indonesia/ Malasia	Latin America
Oil seeds output	0.459	0.154	1.09	-1.94	0.229
	_				

Increase in conversion to oilseed:

				Indonesia/	
'000 ha	Brazil	Canada	EU	Malasia	Latin America
Oil seed					
conversion	87	11	135	-176	34
Other					
agriculture	-42	3	-94	123	-27
Total conversion					
to agriculture	45	14	41	-53	7

Increase in tariffs (25%)

Different conversion of land:

Conclusion

- Tariff around 7% lowest global emissions
- Important to consider response of other regions and market adjustments
- Parameters very important
 - Emissions from forest lost higher than forest gained