EV-model: an integrated top-down - bottom-up-model for Finland

Juha Honkatukia
Government Institute for Economic Research
e-mail: Juha.Honkatukia@vatt.fi

• Background
• EV-model
• Key elements of Finnish Climate change strategy
• Costs of Finnish Climate change strategy
The costs of Finnish climate change strategy

Juha Honkatukia
Government Institute for Economic Research
e-mail: Juha.Honkatukia@vatt.fi

• Recent studies on Climate change policies in ETLA, VATT and VTT Energy
 – Development of EV-model with VTT Energy
 • Forsström and Honkatukia (2002)
 – Finnish climate change policies
 • Evaluation of national Climate change strategy with VTT
 • Several studies on Kyoto mechanisms
 – International climate change policies
 • Several studies on energy taxes
 • Regional energy markets and climate change policies
 • Emission trade in the EU

• New initiatives
 – Distributional effects on climate change policies
 • Regional
 • Income groups
 – Further analysis on regional energy markets and climate change policies
 • Electricity markets in CGE-models
 • Finland
 • Northern dimension?
Background: climate policies

• Economic Instruments for Climate Policies
 – Carbon taxes
 – Kyoto mechanisms
 – Command and control policies
 – Voluntary agreements

• A great many questions
 – The effects of domestic economic measures
 • Price effects
 – Direct impact on demand for fossil fuels
 – Indirect effect on other sectors via relative price changes and the use of fuels as intermediate inputs
 • Macroeconomic effects
 – Effects caused by export price competitiveness
 – Income effects
 – Carbon leakage
 • The effects of other economic policies
 – Revenue recycling
 • Technology policies
 • Conflicts between climate and other policies

• The effects of the actions of other countries
 • Kyoto mechanisms
 • Price competitiveness
 • Changes in export demand

• Technology effects
 – Crucial, but often not covered in detail, or:
 – Only technology effects covered
• Implementing Kyoto targets involves both technological and economic measures
 – both need to be addressed

• Cost estimates for implementing Kyoto targets from technological and economic models seemingly stem from two different worlds
 – Two approaches often create confusion and unnecessary debate

• The “conflict” stems from a misperception
 – Technology models usually partial equilibrium
 – Economical models usually general equilibrium
 – Top-down: choice of technology exogenous and emissions endogenous
 – Bottom-up: demand for energy services exogenous and technology choice endogenous

• Approaches can be combined to answer more questions
 – Can answer specific technology questions
 – Can introduce economic measures

• Hybrid also produces more answers
 – Can handle broad cost concepts (GDP, utility, equivalent variations, replacement costs etc.)

• Hybrid has some real advantages
 – “unrealistic” technology assumptions are ruled out
 – Scarcity rents are included
μ = 1, niin vain T1 tuottaa.

 isoquant for technology bundle

 Isoquant for technology bundle

 Technology-bundle isoquant

 Isoquant for a top-down model

 Top-down isoquant
EV-model

• Model takes into account
 – Power production technologies (18 in all)
 – Process technologies (forest, chemical and metal industries)
 – Most fuels
 • motor gasolines
 • diesel fuels
 • light fuel oil
 • heavy fuel oil
 • LPG
 • coal
 • peat
 • natural gas
 • wood
 – Energy taxes
 – Prices and competitiveness
 – Labour markets
 – Capital markets
 – Energy efficiency
 – Kyoto mechanisms (to an extent)

• Model does not account for
 – Endogenous productivity gains
 – Other countries’ policies (only as scenarios)
 – Spillovers from Kyoto mechanisms
Utility in EV model

Utility

Consumption

Consumption goods

Good 1

Domestic

Foreign

Good N

Energy

Electricity and heat

District heat

Electricity

Domestic

Foreign

Fuels

Wood

Peat

Oil products
Table 3.3 Production sectors and parameters

<table>
<thead>
<tr>
<th>ISIC Code</th>
<th>Sector Description</th>
<th>σ_j^M</th>
<th>σ_j</th>
<th>KLE</th>
<th>X^j</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISIC10</td>
<td>Agriculture and fisheries</td>
<td>5.6</td>
<td>0.56</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC12</td>
<td>Forestry</td>
<td>5.6</td>
<td>0.56</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC23</td>
<td>Mining and quarrying</td>
<td>5.6</td>
<td>1.12</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC291</td>
<td>Production of peat</td>
<td>5.6</td>
<td>1.12</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC292</td>
<td>Production of natural gas</td>
<td>5.6</td>
<td>1.12</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC293</td>
<td>Mining of coal</td>
<td>1.26</td>
<td></td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC299</td>
<td>Other mining</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC31</td>
<td>Food, beverages and tobacco</td>
<td>4.4</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC32</td>
<td>Textiles, apparel and leather</td>
<td>4.4</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC33</td>
<td>Wood products and furniture</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC341</td>
<td>Paper and pulp</td>
<td>3.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC342</td>
<td>Printing</td>
<td>3.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC351</td>
<td>Basic chemical industries</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC352</td>
<td>Chemical products</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC355</td>
<td>Rubber and plastics</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC3531</td>
<td>Gasolines, kerosene</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC3532</td>
<td>Diesel oils</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC3533</td>
<td>Light fuel oils</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC3534</td>
<td>Heavy fuel oils</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC3535</td>
<td>LPG</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC3539</td>
<td>Other oil products</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC361</td>
<td>Glass and ceramic products</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC362</td>
<td>Cement and construction elements</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC371</td>
<td>Iron and steel</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC372</td>
<td>Non-ferrous basic metals</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC381</td>
<td>Metal products</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC382</td>
<td>Machinery and equipment</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC383</td>
<td>Electrical machinery and equipment</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC384</td>
<td>Transport equipment</td>
<td>10.28</td>
<td></td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC39</td>
<td>Other production</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC41</td>
<td>Electricity generation and distribution</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC42</td>
<td>Heat generation and distribution</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC43</td>
<td>Water supply</td>
<td>5.6</td>
<td>1.26</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC51</td>
<td>Construction of buildings</td>
<td>3.8</td>
<td>1.4</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC52</td>
<td>Construction of infrastructure</td>
<td>3.8</td>
<td>1.4</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC61</td>
<td>Retailing</td>
<td>3.8</td>
<td>1.4</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC63</td>
<td>Hotels and restaurants</td>
<td>3.8</td>
<td>1.4</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>ISIC7111</td>
<td>Railway transports</td>
<td>3.8</td>
<td>1.68</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.3 Production sectors and parameters (cont.)

<table>
<thead>
<tr>
<th>ISIC</th>
<th>Description</th>
<th>σ</th>
<th>KL</th>
<th>KL^X</th>
</tr>
</thead>
<tbody>
<tr>
<td>7119</td>
<td>Road transports</td>
<td>3.8</td>
<td>1.68</td>
<td>0.25</td>
</tr>
<tr>
<td>7120</td>
<td>Water transports</td>
<td>3.8</td>
<td>1.68</td>
<td>0.25</td>
</tr>
<tr>
<td>7130</td>
<td>Aviation</td>
<td>3.8</td>
<td>1.68</td>
<td>0.25</td>
</tr>
<tr>
<td>72</td>
<td>Postal and telecommunications services</td>
<td>3.8</td>
<td>1.68</td>
<td>0.25</td>
</tr>
<tr>
<td>81</td>
<td>Finance and banking</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
</tr>
<tr>
<td>83</td>
<td>Housing and business services</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
</tr>
<tr>
<td>91</td>
<td>Other private services</td>
<td>3.8</td>
<td>1.26</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Public services

- Import elasticity: σ^M
- Labour-capital elasticity of substitution: σ^{KL}
- Value added energy – intermediate good elasticity of substitution: σ^{KLE}, σ^X

Table 3.4 Utility function parameters

<p>| σ_C | Elasticity of substitution between goods | .5 |
| σ_{CEL} | Consumption-leisure elasticity of substitution | .52 |
| σ_{FE} | Elasticity of substitution between energy and goods | .25 |
| $\sigma_{HE, SF}$ | Elasticity of substitution between heat, electricity, and between fuels | .25 |
| σ_{FHE} | Elasticity of substitution between heat-electricity and fuels | .15 |</p>
<table>
<thead>
<tr>
<th>X40111</th>
<th>Hydropower, wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>X40114</td>
<td>Nuclear</td>
</tr>
<tr>
<td>X40122</td>
<td>Distribution of heat and electricity</td>
</tr>
<tr>
<td>X401291</td>
<td>Peat-fired condensing plants</td>
</tr>
<tr>
<td>X401292</td>
<td>Coal-fired condensing plants</td>
</tr>
<tr>
<td>X401293</td>
<td>Natural gas-fired condensing plants</td>
</tr>
<tr>
<td>X4013534</td>
<td>Oil-fired condensing plants</td>
</tr>
<tr>
<td>X40212</td>
<td>Wood-fired CHP</td>
</tr>
<tr>
<td>X402291</td>
<td>Peat-fired CHP</td>
</tr>
<tr>
<td>X402292</td>
<td>Coal-fired CHP</td>
</tr>
<tr>
<td>X402293</td>
<td>Natural gas-fired CHP</td>
</tr>
<tr>
<td>X4023534</td>
<td>Oil-fired CHP</td>
</tr>
<tr>
<td>X40312</td>
<td>Wood-fired district heat</td>
</tr>
<tr>
<td>X403291</td>
<td>Peat-fired district heat</td>
</tr>
<tr>
<td>X403292</td>
<td>Coal-fired district heat</td>
</tr>
<tr>
<td>X403293</td>
<td>Natural gas-fired district heat</td>
</tr>
<tr>
<td>X4033534</td>
<td>Oil-fired district heat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X3411</th>
<th>Newsprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>X3412</td>
<td>SC-paper</td>
</tr>
<tr>
<td>X3413</td>
<td>LWC-paper</td>
</tr>
<tr>
<td>X3414</td>
<td>Fine paper</td>
</tr>
<tr>
<td>X3415</td>
<td>Paperboard and pulp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X3711</th>
<th>Basic oxygen furnace steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>X3712</td>
<td>Electric arc furnace steel</td>
</tr>
<tr>
<td>X3713</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>X372</td>
<td>Non-ferrous metals and ferrochromium</td>
</tr>
</tbody>
</table>
Evaluating the costs of Finnish Climate Change Strategy

• Based on an “official” BAU
 – Responsible ministries evaluated energy saving potential in their fields
 – FM and MTI considered macroeconomic BAU

• EV-model used for analysis
 – Bottom-up – part calibrated according to EFOM results
 – Top-down – part follows economic BAU
 – Point of reference: BAU in 2010

• Policy alternatives
 – Energy saving programme and programme for renewable energy always included
 • Tax breaks and subsidies for green energy
 • CAC for energy saving
 – Two electricity supply scenarios
 • Natural gas
 • Nuclear
 – Most alternatives include increases in fuel and electricity taxes
• **Evaluating energy saving**
 – Energy saving consists of detailed policies that increase energy efficiency
 – Energy saving may benefit users of energy
 – Costs evaluated on the basis of required investments
 • Heating: CLIMTECH
 • Electricity and fuels: EFOM
 • Administrative costs: mostly n.a.

• **Renewable energy**
 – Goals:
 • Wood-based CHP +15 %
 • Wood-based HP +75 %
 • Wind (and water) +15 %
 – Costs stem from investment on new capacity
 • EV estimate
 – Tax breaks and subsidies for green energy must be financed
 • Budgeted amounts
 • Wood: around 100m € by 2010
 • Wind, water 2-3m€ by 2010
• Energy taxes and subsidies
 – Climate change policies are to be revenue neutral
 – Energy tax scenarios
 • CO2 and electricity taxes both raised
 • Transport fuel taxes not raised
 • CAC: more subsidies
 – Revenue recycling
 • 100% Income taxes/transfers
 – Tax wedge -effect disregarded
 • 50% income taxes/transfers, 50% social security payments
 • 50% income taxes/transfers, 50% social security payments
 • 100% Income taxes
 – Tax wedge –effect present
 • 100% VAT
Some results

• Emissions reduced by 21-27 % from BAU (BAU: 69.5 Mt CO2 in 2010)

• GDP down by 0.2-0.7 % compared to BAU

• GDP loss 0.1-0.3 percentage points lower if electricity generation strategy is nuclear-based than if it is natural gas-based

• Employment down by 0.1-0.5 % from BAU
 – Decline smaller in nuclear option
 – Some scope for a green tax reform

• Private consumption falls by 0.6-1.6 % from BAU
 – Fall 0.6 points smaller in nuclear
 – Fall smaller if transportation fuel taxes are not raised

• Energy intensive industries suffer more than labour intensive

• Revenue-recycling can reduce costs – but not much

• GDP: falls more with gas
• Consumption: falls 0.6 % more with gas
• Employment: falls
• Emissions: both hit the target
• Effects smaller, if transport fuel taxes not raised
 – Transport fuel taxes hit consumers relatively more, inducing labour supply and consumption effects