How significant are export subsidies to agricultural trade? trade and welfare implications of global reforms

by

Aziz Elbehri
Susan Leetmaa

Economic Research Service, USDA

5th International Conference on Global Economic Analysis, Taiwan 2002
Export subsidies and WTO

- Doha WTO Meeting--“Development Round”
- Doha and Agriculture: Specific goals for Export subsidies
- Implications for developing countries:
 - Export subsidies affect net food import via world prices
 - Export subsidies handicap non-subsidizing exporters
Trade Reforms & Theory of Second Best

- Second Best Effect-- Well known theory

- Empirical demonstrations-- Few:
 - Loo and Tower (1990)
 - Anderson and Tyers (1993)
 - Martin and Hertel (2000)
Export subsidy Liberalization: A CGE trade and welfare analysis

• Comparative static GTAP (19x19 aggregation)

• Comprehensive multi-country Export subsidy rates

• Welfare analysis--direct and indirect effects:
 – Model scenarios: (1) Removal of all export subsidies; (2) removal of all distortions
 – Welfare decomposition approach
Welfare Decomposition in GTAP (Huff and Hertel)

Equivalent Variation =

Terms of Trade + Allocative Efficiency + Endowment change + Technical change
Welfare Decomposition in GTAP
(Huff and Hertel)

Equivalent Variation =

Terms of Trade

+ Tax/subsidy on primary factors
+ Tax/subsidy on intermediate inputs
+ Tax/subsidy on final goods
+ Tax/subsidy on final consumption
+ Tax/subsidy on exports
+ Tariff/subsidy on imports

Allocative Efficiency

Endowment change

Technical change
Effective export subsidy rates (1998)

<table>
<thead>
<tr>
<th></th>
<th>EU</th>
<th>Switzerland</th>
<th>Norway</th>
<th>USA</th>
<th>Hungary</th>
<th>Slovakia</th>
<th>Czech</th>
<th>South Africa</th>
<th>Venezuela</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse grains</td>
<td>34.2</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veg&fruits</td>
<td>0.8</td>
<td>65.6</td>
<td></td>
<td>2.3</td>
<td></td>
<td>1.0</td>
<td></td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Sugar</td>
<td>54.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
<td>2.6</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Dairy</td>
<td>24.2</td>
<td>80.1</td>
<td>97.3</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>Bovine meats</td>
<td>27.1</td>
<td>32.6</td>
<td>0.5</td>
<td>45.2</td>
<td>65.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White meats</td>
<td>4.2</td>
<td>56.9</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors’ calculations from WTO submissions and UN trade data.
Export subsidy removal: Global price and trade effects

<table>
<thead>
<tr>
<th>(% change from base)</th>
<th>Removal of Export Subsidies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>World</td>
</tr>
<tr>
<td></td>
<td>price</td>
</tr>
<tr>
<td>wheat</td>
<td>0.3</td>
</tr>
<tr>
<td>grain</td>
<td>1.4</td>
</tr>
<tr>
<td>rice</td>
<td>0.6</td>
</tr>
<tr>
<td>oilseeds</td>
<td>0.3</td>
</tr>
<tr>
<td>fiber</td>
<td>0.2</td>
</tr>
<tr>
<td>oilseed products</td>
<td>0.2</td>
</tr>
<tr>
<td>sugar</td>
<td>5.6</td>
</tr>
<tr>
<td>dairy</td>
<td>4.3</td>
</tr>
<tr>
<td>Bovine meat</td>
<td>1.5</td>
</tr>
<tr>
<td>Non-bovine meats</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Source: authors' simulation results
Export subsidy removal: Global price and trade effects

<table>
<thead>
<tr>
<th>(% change from base)</th>
<th>Removal of Export Subsidies</th>
<th>Removal of all Distortions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>World price</td>
<td>Global trade</td>
</tr>
<tr>
<td>wheat</td>
<td>0.3</td>
<td>-0.1</td>
</tr>
<tr>
<td>grain</td>
<td>1.4</td>
<td>-1.9</td>
</tr>
<tr>
<td>rice</td>
<td>0.6</td>
<td>-1.0</td>
</tr>
<tr>
<td>oilseeds</td>
<td>0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td>fiber</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>oilseed products</td>
<td>0.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>sugar</td>
<td>5.6</td>
<td>-8.4</td>
</tr>
<tr>
<td>dairy</td>
<td>4.3</td>
<td>-6.0</td>
</tr>
<tr>
<td>Bovine meat</td>
<td>1.5</td>
<td>-2.7</td>
</tr>
<tr>
<td>Non-bovine means</td>
<td>0.9</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

Source: authors' simulation results
Export subsidy removal: Uneven welfare gains:

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

- MENA
- Japan
- Korea
- Brazil
- Argentina
- United States
- European Union

Total Welfare
Export subsidy removal: Uneven welfare gains: TOT vs efficiency

- MENA
- Japan
- Korea
- Brazil
- Argentina
- United States
- European Union

Terms of trade
Allocative efficiency
Total welfare
Welfare and Second Best Effects

Source: Authors's calculations
Import barriers are key to broader welfare gains

MENA
Japan
Argentina
Aust_NZ
USA
EU

Total welfare (US Millions)

-4000 -2000 0 2000 4000 6000 8000 10000 12000 14000 16000

XS removal
ALL distortions removal
With trade reforms, efficiency gains may outweigh TOT losses

Source: Authors's calculations
Conclusions

• Removing export subsidies by themselves may not be welfare improving for net food importers in the presence of import barriers

• Improving global welfare and extending the gains to a maximum of countries critically depends on tackling the far more significant import trade barriers

• Demonstrated the empirical significance of second best effects in welfare analysis of trade liberalization