The Effects of Non-Tariff Measures on Prices, Trade, and Welfare: CGE Implementation of Policy-Based Price Comparisons

The USITC Office of Economics NTM Project Team
Shuby Andriamananjara
Judy Dean
Bill Donnelly
Michael Ferrantino
Bob Feinberg
Rodney Ludema
Diane Manifold
and
Marinos Tsigas

DISCLAIMER: This presentation is the work of the above-named and reflects their views only. It does not reflect the views of the U.S. International Trade Commission, any of its Commissioners, or the government of the United States.
The Effects of Non-Tariff Measures on Prices, Trade, and Welfare: CGE Implementation of Policy-Based Price Comparisons

A roadmap of the presentation

- We construct a policy database of alleged NTMs by product, sector, type, and country imposing them
- Then, we econometrically assign price gaps to them using retail prices, controlling for sector-specific causes of deviations from PPP (approximately, the wholesale-retail margin)
- Then, we simulate their hypothetical elimination in CGE for three sectors (processed foods, apparel, and footwear)
- All of this is done with a 2001 baseline.
- This is work in progress.
Sources of Policy Data

• The USITC NTM Database
 – 3000 + records drawn from EU Market Access Database, USTR National Trade Estimate, WTO Trade Policy Reviews

• UNCTAD TRAINS

• “Complaint reports” vs. self-notification
Contents of the USITC NTM Database
53 countries (including EU), 15 policy categories

- Anticompetitive practices/competition policy
- Corruption
- Customs
- Export policies
- Government procurement
- Import licensing
- Import prohibitions
- Import quotas
- Intellectual property rights (but this probably *lowers*, not *raises* prices)
- Investment
- Sanitary and phytosanitary requirements
- Services
- Standards, testing, certification and labeling
- State trading
- Taxes

Product, sector, and specific barrier detail is included – see Manifold and Donnelly (2003).
Econometric Strategy

1. Estimate the tariff equivalent of NTMs for many products and countries.
 - EIU City Data: Retail prices for 160+ products, housing and services, from 123 cities, in 79 countries

2. Use explicit data on NTM incidence.
 - UNCTAD TRAINS (Using WITS)
 - USITC NTM Database
 - Definition used in this exercise: TRAINS 6000 (quantitative restrictions) plus USITC NTM entries for import quotas, bans, non-automatic licensing, VERs, prior authorizations

3. Estimate the tariff equivalent of NTMs directly.
 - Differentiated products model of retail prices
 - Dummy variables capturing NTM incidence
Micro Foundation - Retail Price Equation

\[P_{i}^{R} = \bar{P} + \mu_i + \sum_{j=1}^{M} \theta_j (C_{Tij} + t_{ij} + r_{ij}) \]

Where:
- \(P_{i}^{R} \) is retail price in city i
- \(\mu \) are distribution costs in city i
- \(P \) is average "world" price
- \(C \) are transport costs
- \(t \) are specific tariffs
- \(r \) are rents from NTMs
- \(\theta \) is the share of varieties produced by city j

Assumptions: All cities consume all varieties of a good, and the observed retail price is a simple average of all varieties of good x found in retail stores in city i. This price reflects the home country's tariffs, NTMs, local distribution costs, and transport costs.
III. Estimation Method

- Estimate as a panel--cross-country, over cities--using GLS, and country heteroskedasticity correction

- Assume the constant term incorporates the impact of large country trade barriers on smaller countries' prices

- Include SUR correction

- Pool data for like products and include product-specific constants
Estimating equation (pooled by GTAP sector)

\[P^s_r = a_0' + a_1' \cdot RG_r + a_2' \cdot D_r + \alpha_3 \cdot Z_r + \alpha_4 \cdot \delta_r' \cdot d_r + \alpha_5 \cdot \delta_t' \cdot t_r + a_6' \cdot DUM \cdot NTM \]

- In which \(P \) are the retail prices, \(RG \) are regional-specific fixed effects, \(D \) are specific product dummies, \(Z \) are city-specific variables influencing the markup, \(d \) is distance (remoteness), \(t \) is the ad valorem tariff, and \(DUM \cdot NTM \) indicates that a city is in a particular country having an NTM.
- Log-log GLS with SUR across products/within sectors, correcting for region-specific heteroskedasticity.
- In some cases \(RG \) is used as a proxy for \(DUM \cdot NTM \) when this is necessary to achieve identification of the model.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zimb/S. Africa</td>
<td></td>
</tr>
<tr>
<td>Rest of SSA</td>
<td></td>
</tr>
<tr>
<td>AUS/NZ</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td></td>
<td>66²</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSU/EE</td>
<td></td>
</tr>
<tr>
<td>Rest of LA</td>
<td></td>
</tr>
<tr>
<td>MERC</td>
<td></td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico/CA</td>
<td>30</td>
<td></td>
<td>25</td>
<td>101</td>
<td>80</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE Asia</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>South Asia</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>East Asia</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>191²</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td>25²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>190²</td>
<td>39²</td>
<td>199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME/TKY</td>
<td>19</td>
<td></td>
<td>22 38</td>
</tr>
<tr>
<td>N. Africa</td>
<td></td>
</tr>
<tr>
<td>EFTA</td>
<td></td>
<td>16²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td></td>
</tr>
</tbody>
</table>
Conceptual Framework

• How to introduce NTM into simulation models?
 – Model explicitly (e.g., quantity contraints)
 – Introduce as price wedges or price gaps (NTMs introduce price distortions)

• How to introduce price gaps into simulation model?
 – Tariff equivalent
 – Export tax equivalent
 – Structural frictions

• Choice made on a case by case basis
Conceptual Framework

<table>
<thead>
<tr>
<th>Features</th>
<th>Impact of removal</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tariff Equivalent</td>
<td>Economic rents collected as government revenues</td>
<td>Worse terms of trade, Efficiency gains</td>
</tr>
<tr>
<td>Export tax equivalent</td>
<td>Economic rents collected by exporting country</td>
<td>Better terms of trade, Efficiency gains</td>
</tr>
<tr>
<td>Sand in the wheels</td>
<td>No economic rents, all deadweight efficiency losses</td>
<td>Worse terms of trade, Efficiency gains</td>
</tr>
</tbody>
</table>
Simulated removal of barriers - Highlights

• Global welfare gains from removal of this class of NTMs are about $90 billion, mostly accruing to liberalizers. This is probably low – see last slide

• Biggest gains from regional liberalization by Japan ($37.7 billion) and the EU ($28.7 billion)

• Biggest gains from sectoral liberalization in apparel ($64 billion), misc. machinery and equipment ($11.7 billion), paper and publishing ($5.6 billion) and leather and footwear ($4.6 billion)
Goals of future research

- Cover a wider range of policies – should raise estimate of effects.
- Improve NTM estimates (which are currently unconstrained as to sign) - should raise estimate of effects. Also use multiple years of price data.
- Estimate quantity effects econometrically
- Tailor simulation technique to type of policy – effect uncertain.