“Measurable Dimensions of Product Differentiation in International Trade”

David Hummels
Volodymyr Lugovskyy

Purdue University

Prepared for 7th annual conference on Global Economic Analysis
“Measurable Dimensions”

- Recent work in IO provides techniques for richly describing product space
- Unfortunately, these techniques require highly detailed data on product characteristics
- Trade data are much more sparse. At best, one can find p, q, for each bilateral partner

- Question: can we find ways to characterize product space without product characteristics?
What distinguishes major models?

• How are goods differentiated?
 – Horizontal (type) v. vertical (quality)

 – Evidence: vertical IIT (many); within-sector price differences (Schott, Hallak); quality as a demand residual (Hummels-Klenow)

• Who does the differentiation?
 – Firms (Krugman) v. Countries (Armington)

 – Evidence: variety expansion (Hummels-Klenow); home market effects (Head-Ries)
Armington, Krugman v. Facts

<table>
<thead>
<tr>
<th>Variable</th>
<th>Armington</th>
<th>Krugman</th>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Varieties</td>
<td>Constant</td>
<td>Proportional to the market size</td>
<td>a 1% ?in GDP ? 0.5% ?in varieties, 0.5% ?output per variety (HK, 2004)</td>
</tr>
<tr>
<td>Output per Variety</td>
<td>Proportional to Market Size</td>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>Cross-Importer Prices</td>
<td>Same for all markets</td>
<td>Same for all markets</td>
<td>PTM: prices vary across destinations</td>
</tr>
<tr>
<td>Price Elasticity of Demand</td>
<td>Constant</td>
<td>Constant</td>
<td>No direct evidence</td>
</tr>
</tbody>
</table>
How do consumers value differentiation?

Dixit-Stiglitz, 1977 “love of variety” approach

– Representative consumer demands all varieties
– Marginal utility of new varieties doesn’t decline with entry.
– Product space never “fills up”

Lancaster, 1979 “ideal variety” approach

– Each consumer has strong preference for one (“ideal”) variety
– Product space is finite (circle) and fills up. MU of new varieties declines with entry.
A generalized ideal variety model

• The model generates predictions regarding quantities and number of varieties, which provide a better fit to empirical facts than “love of variety” models.

• We show theoretically that the price elasticity of demand (and therefore prices) vary systematically across importers:
 – Elasticity increases with market size
 – Elasticity decreases with productivity level

• Key empirical question: does variety space “fill up”, i.e. do goods become closer substitutes as the number of varieties grows.
Closed Economy

- Utility: \(U = q_0^{1-\mu} \left[u(q_\omega) \right]_{\omega \in \Omega}^\mu \)

\(q_0 \) is a normalized homogeneous good produced with CRS
\(q \) is a differentiated product indexed by a continuum of varieties \(\omega \in \Omega \)

- Subutility

\[u(q_\omega) = \frac{q_\omega}{h(q_\omega, v_\omega, \omega)} \]
Lancaster compensation function

• Assumes strength of preference for ideal variety is independent of quantities consumed

• Example:
 – Consumer chooses between his ideal variety (Apple Juice) and less preferred variety (water)

 – Price(AJ) = 5 Price(Water)

 – If consumer chooses 5 cups of water over 1 cup of AJ; he will also choose 5 gallons of water over 1 gallon of AJ
Generalized Ideal Variety Model

- Allows the strength of preference for the ideal variety to depend on quantities consumed
 - as consumption volume rises, consumers place greater value on the proximity to their ideal variety

<table>
<thead>
<tr>
<th>Lancaster</th>
<th>Generalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(v) = 1 + v^\beta$</td>
<td>$h(v, q) = 1 + v^\beta q^\gamma$</td>
</tr>
<tr>
<td>$\beta > 1, \ 0 \leq \gamma \leq 1$</td>
<td></td>
</tr>
</tbody>
</table>
Willingness to pay for 1 unit of $w\%$ in terms of ω

Generalized compensation functions

$\gamma_2 > \gamma_1$

$\gamma_1 > 0$

Lancaster compensation function

$\gamma_0 = 0$

Figure 1. Lancaster and generalized compensation functions.
Predictions for Equilibrium Variables

- Prices:
 \[p = c \frac{\varepsilon}{\varepsilon - 1} \]

- Quantity per variety
 \[Q = \frac{\alpha}{c} (\varepsilon - 1) \]

- Number of varieties
 \[n = \frac{\mu z L}{\alpha \varepsilon} \]
Equilibrium Intuition

• As economy grows larger, variety space fills up, varieties become closer substitutes ? price elasticity rises.

• As economy grows richer (cond on size), willingness to pay for ideal variety rises ? price elasticity falls.

Note: in this case, higher income alters consumer perceptions of variety space
Equilibrium Price Elasticity of Demand

\[\varepsilon = 1 + \frac{1}{2\beta} \left(\frac{p}{\mu z} \right)^\gamma (2n)^\beta + \frac{1-\gamma}{2\beta} \]

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>Lancaster</th>
<th>Generalized</th>
<th>Empirical facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(?e/?L)</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(?e/?z)_{zL=Const}</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Intuition (2)

• Sign predictions for prices are inverse of price elasticity
• Implies: output per variety must rise in order to cover fixed costs of entry.

• Implies: number of varieties increases with market size, but less than proportionally.
Equilibrium Quantity per Variety

\[Q = \frac{\alpha}{c} (\varepsilon - 1) \]

<table>
<thead>
<tr>
<th></th>
<th>Krugman DS</th>
<th>Lancaster</th>
<th>Generalized</th>
<th>Empirical facts (HK, 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial Q}{\partial L})</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(\frac{\partial Q}{\partial z} \bigg</td>
<td>_{zL=\text{Const}})</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>
Equilibrium Number of Varieties

\[n = \frac{\mu zL}{\alpha \varepsilon} \]

<table>
<thead>
<tr>
<th></th>
<th>Krugman DS</th>
<th>Lancaster</th>
<th>Generalized</th>
<th>Empirical facts (HK, 2002)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{n}{\varepsilon})</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>proportionally</td>
<td>Less than proportionally</td>
<td>Less than proportionally</td>
<td>Less than proportionally</td>
</tr>
<tr>
<td>(\frac{n}{\varepsilon} \mid _{zL=\text{Const}})</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Less than proportionally</td>
<td>Less than proportionally</td>
<td>Less than proportionally</td>
<td>Less than proportionally</td>
</tr>
</tbody>
</table>
Empirical Exercise

• We know from existing empirical literature that generalized ideal variety framework matches predictions on how varieties, output per variety expand with size, income.

• Can we find direct evidence that
 – variety space fills up, i.e. larger markets have higher price elasticity of demand
 – perceptions of variety space vary by income; richer markets have lower price elasticity of demand
Data

- UNCTAD TRAINS database: 59 importers; all exporters worldwide

- Bilateral trade value, tariff measured at 6 digit level of the Harmonized Classification System (5000+ categories) in 1999

- GDP, GDP per capita from WDI
Estimating Technique

• Estimate commodity-level import demand as a function of relative prices
 – All variables are differenced with respect to their exporter x commodity means; takes out exporter size, quality effects.
 – Price variation comes from bilateral variation in tariff rates in cross-section
 – If price elasticity is constant, it is given by the coefficient on price (tariff)

• Interact tariffs with Y, Y/L to see if elasticity varies across importer characteristics
Fixed Effect Estimates of Import Demand

\[\ln M_{ijk} = \delta_{jk} + b_0 + b_1 \ln tar_{ijk} + b_2 \ln Y_i + b_3 \ln \left(\frac{Y}{L} \right)_i \]
\[+ b_4 \ln tar_{ijk} \ln Y_i + b_5 \ln tar_{ijk} \ln \left(\frac{Y}{L} \right)_i + e_{ijk} \]

<table>
<thead>
<tr>
<th>Dependent variable: (\ln(\text{import}))</th>
<th>Tariff rate (t_{ijk})</th>
<th>GDP (importer) (Y_i)</th>
<th>GDP per capita (importer) (\left(\frac{Y}{L} \right)_i)</th>
<th>GDP and tariff interaction term (Y_i \times \text{tar}_{ijk})</th>
<th>GDP per capita and tariff interaction term (\left(\frac{Y}{L} \right)i \times \text{tar}{ijk})</th>
<th>(R^2)</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>coeff (se)</td>
<td>13.2** (.29)</td>
<td>.45** (.001)</td>
<td>-.08** (.002)</td>
<td>-.68** (.001)</td>
<td>.35** (.002)</td>
<td>.16</td>
<td>986,756</td>
</tr>
</tbody>
</table>

Estimated price elasticity of demand (evaluated at means) = -1.43
Industry Regressions: Distribution of the Interaction Terms

GDP (by value)

GDP Per Capita (by value)

GDP (by count)

GDP Per Capita (by count)
Both interaction terms are significant + correct signs

30 industries, 56% of the total value of trade
Price Elasticity of Demand (at GDP means)

HS 2 categories ordered by the average elasticity
Price Elasticity of Demand (selected industries)

22 industries
50% of the value of trade

10th percentile
Average
90th percentile

HS 2 categories ordered by the average elasticity
Conclusions

- Love of variety models incorrectly predict variation in:
 - Prices
 - Import per variety
 - Number of imported varieties
- We generalize ideal variety framework to match existing empirical facts regarding:
 - Import per variety
 - Number of imported varieties
- New facts (matching ideal variety theory):
 - (Absolute value of) price elasticity of demand *increases* with importer GDP and *decreases* with importer income per capita.

? Variety space fills up.