Elasticities of Substitution in Nested CES Systems

Robert McDougall

GTAP Research Memorandum No. 16

July 2009
Elasticities of Substitution in Nested CES Systems

Robert McDougall

July 20, 2009

Burniaux and Truong [1] cite several times (on pages 18, 20, 24, and 30) a formula from Keller ([3], page 83, equation (5.67)) for elasticities of substitution in nested CES systems. Unfortunately, the presentation in Burniaux and Truong [1] is not quite clear or consistent, while that in Keller ([3], page 83) employs notation defined over many preceding pages. Keller [3] in turn cites Keller [2], which is briefer, but still contains a good deal of material not to the immediate purpose. This note provides a minimal statement and derivation of the Keller formula.

Our approach differs from Keller [2] in that he deals with nested origin-shifted CES systems, while we consider only nested CES systems strictly defined, and that he derives the demand equations in the levels, while we provide only a differential solution. Our notation is somewhat different from and, we hope, clearer than that of Keller [3].

In a nested CES production system, we have commodities comprising initial inputs, intermediate aggregates, and a final output. Each intermediate aggregate is both an intermediate input and an intermediate output. In each nest, the output is a direct product of the inputs, and the inputs are direct factors of the output. There are also indirect products and indirect factors: a product of a product of an input is an indirect product of that input, and a factor of a factor of an output is an indirect factor of that output.

Let C denote the set of commodities, O the set of outputs, both final and intermediate, and I the set of inputs, both intermediate and initial. Let $\pi : I \to O$ map each input to its direct product. Let N denote the set of initial inputs, and f, final output.

For each commodity i, let P_i denote price, Q_i quantity demanded, and p_i and q_i the corresponding log differentials, $p_i = d \log P_i$ and $q_i = d \log Q_i$. Let V_i denote cost, $V_i = P_i Q_i$. For each input i, let S_i denote its share in the cost of its direct product, $S_i = V_i / V_{\pi(i)}$. For each output i, let σ_i denote the elasticity of substitution between its direct factors. Then the demand system generated by the production system is the...
system of equations

\[p_i = \sum_{j \in \mathcal{I} : \pi(j) = i} S_j p_j, \quad i \in \mathcal{O}, \quad (1) \]

\[q_i = q_{\pi(i)} - \sigma_{\pi(i)} \left(p_i - p_{\pi(i)} \right), \quad i \in \mathcal{I}. \quad (2) \]

We take as given the prices \(p_i, i \in \mathcal{N} \) of initial inputs and the quantity \(q_f \) of final output, and solve for the prices \(p_i, i \in \mathcal{O} \) of outputs and the quantities \(q_i, i \in \mathcal{I} \) of inputs.

The depth of a commodity is the number of direct factor-product relations between it and final output, so that final output itself has depth 0, its direct factors have depth 1, and so on. Let \(d : \mathcal{C} \to \mathcal{N} \) map each commodity \(i \) to its depth \(d(i) \), where \(\mathcal{N} \) denotes the set of natural numbers, zero-inclusive. The depth of the system is the maximum of the depths of the commodities, \(\max\{ n \in \mathcal{N} : \text{for some } i \in \mathcal{C}, d(i) = n \} \).

For \(n \in \mathcal{N} \), let \(\mathcal{E}_n \) denote the set of commodities of depth \(n \), and \(\mathcal{B}_n \) the set of commodities of depth greater than or equal to \(n \). For \(n \in \mathcal{N} \), let \(\pi_n : \mathcal{B}_n \to \mathcal{E}_n \) map each commodity in \(\mathcal{B}_n \) to its unique product in \(\mathcal{E}_n \), that is, to its level-\(n \) product. For \(i \) in \(\mathcal{E}_n \), we set \(\pi_n(i) = i \), that is, we call each commodity (degenerately) its own product at its own level.

For \(n \in \mathcal{N} \) and \(i \) in \(\mathcal{B}_n \) such that \(\pi_n(i) \in \mathcal{O} \) (that is, such that the level-\(n \) product of \(i \) is an output, equivalently, such that \(i \) is not an initial input of depth \(n \)), let \(\sigma_{n,i} \) denote the elasticity of substitution between factors of the level-\(n \) product of commodity \(i \), \(\sigma_{n,i} = \sigma_{\pi_n(i)} \).

Proposition 1 For \(i \) in \(\mathcal{C} \) and \(m \) and \(n \) in \(\mathcal{N} \) such that \(n \leq m \leq d(i) \), \(S_{n,i} = S_{n,\pi_m(i)} S_{m,i} \).
Proposition 2 For the nested CES demand system (1)–(2),

\[p_i = \sum_{j \in \Phi(i)} S_{d(i),j} p_j, \quad i \in O \]

\[q_i = q_f + \sum_{j \in N} \left[\sum_{n=0}^{c(i,j) - 1} (S_{n,j} - S_{n+1,j}) \sigma_{n,\kappa(i,j)} + (1 - \phi(i,j)) S_{c(i,j),j} \sigma_{\kappa(i,j)} \right] p_j, \quad i \in I \]

Proof is by induction on the depth of the system, and proposition 1.

Our object is to obtain the elasticity of substitution, \((1/S_{0,j})(\partial \log Q_i/\partial \log P_j)\), for distinct initial inputs \(i\) and \(j\). This is just the product of \((1/S_{0,j})\) and the coefficient of \(p_j\) in the equation for \(q_i\) in proposition 2.

For \(n\) in \(N\) and \(j\) in \(B_n\), let \(T_{n,j}\) denote the share of the level-\(n\) product of \(j\) in the cost of final output, \(T_{n,j} = S_{0,\pi_n(j)}\). Then, for all \(j\) in \(C\), \(T_{d(j),j} = S_{0,j}\) and \(T_{0,j} = 1\).

Proposition 3 For the nested CES demand system (1)–(2), for distinct initial inputs \(i\) and \(j\), the elasticity of substitution between \(i\) and \(j\) is

\[\sum_{n=0}^{c(i,j) - 1} \left(\frac{1}{T_{n,\kappa(i,j)}} - \frac{1}{T_{n+1,\kappa(i,j)}} \right) \sigma_{n,\kappa(i,j)} + \frac{\sigma_{c(i,j),\kappa(i,j)}}{T_{c(i,j),\kappa(i,j)}}, \]

or (rewriting the last term)

\[\sum_{n=0}^{c(i,j) - 1} \left(\frac{1}{T_{n,\kappa(i,j)}} - \frac{1}{T_{n+1,\kappa(i,j)}} \right) \sigma_{n,\kappa(i,j)} + \frac{\sigma_{\kappa(i,j)}}{S_{0,\kappa(i,j)}}. \]

Proof is by propositions 2 and 1 and the definition of elasticity of substitution.

References

