Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Land Use

Jing Liu1, Thomas Hertel1, Richard Lammers2, Alexander Prusevich2, Uris Baldos1, Danielle Grogan2, and Steve Frolking2

1Purdue University, 2University of New Hampshire

19th GTAP meeting, Washington DC
June 17, 2016
Increasing reliance on unsustainable water withdrawal

- **Unsustainable**: permanent decrease in the volume of water stored in aquifers (Aeschbach-Hertig and Gleeson, 2012)
- **Sustainable**: withdrawal less than 20% of available (Alcamo et al., 2000)
Increasing reliance on unsustainable water withdrawal

- **Unsustainable**: permanent decrease in the volume of water stored in aquifers (Aeschbach-Hertig and Gleeson, 2012)
- **Sustainable**: withdrawal less than 20% of available (Alcamo et al., 2000)
- **Irrigation scarcity index**:

\[
\text{Irrigation scarcity index} = \frac{\text{Irrigation Withdrawal}}{\text{Water Available for Irrigation}}
\]
Vulnerable irrigation hotspots in 2006

Source: author’s calculation based on 10-yr (2000-2010) average of simulated irrigation demand and irrigation availability for 958 sub-basins.
Where to target for sustainable irrigation in the future?

Evolving irrigation scarcity index, 2050 relative to 2006

Source: author’s calculation.
Achieving sustainable irrigation water use can be costly

Less irrigation may

- reduce food supply
- have side effects on other environment and development metrics
Achieving sustainable irrigation water use can be costly

Less irrigation may
- reduce food supply
- have side effects on other environment and development metrics

Outcome depends on
- climate
- population and income growth
- investment in infrastructure and technology, policies, etc.
Method: Integrated hydro-economic modeling

- **Hydro-model**: Irrigation availability
- **Econ-model**: Food price, Crop output, Land use change
- **Sustainability Policies**

Diagram illustrating the interconnectedness of hydro-economic models with sustainability policies.
Method: Integrated hydro-economic modeling (cont.)

Global Hydro-model (water supply):

- 30 arc-min, aggregated to 958 sub-basins
- Water is sourced from surface, reservoir, and soil-stored water
- Water available for irrigation is the residual after subtracting residential, industrial and livestock uses

Global Econ-model (water demand):

- Partial equilibrium model with sub-national detail on water and land
- Irrigated and rainfed crop production at the 30 arc-min level
Experiments:
Reduce sub-basin irrigation scarcity index to 0.2 in 2050

- No adaptation
- With adaptation
 - inter-basin water transfer
 - improved water productivity (TFP growth)
 - integrated market
Experiments:
Reduce sub-basin irrigation scarcity index to 0.2 in 2050

- No adaptation
- With adaptation:
 - inter-basin water transfer
 - improved water productivity (TFP growth)
 - integrated market
Results

Cropland area change, 2050 relative to 2006
NO adaptation
Sustainability constraint suppresses global cropland expansion in 2050 (Mha)

<table>
<thead>
<tr>
<th>Region</th>
<th>Sustainable</th>
<th>Unsustainable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrigated</td>
<td>Rainfed</td>
</tr>
<tr>
<td>S_Asia</td>
<td>-18</td>
<td></td>
</tr>
<tr>
<td>CHN_MNG</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>S_Amer</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>SSA</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Rest of world</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>156</td>
<td></td>
</tr>
</tbody>
</table>
Sustainability constraint suppresses global cropland expansion in 2050. However, it encourages expansion into the carbon-rich rainfed area.

<table>
<thead>
<tr>
<th>Region</th>
<th>Sustainable</th>
<th></th>
<th>Unsustainable</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irrigated</td>
<td>Rainfed</td>
<td>Total</td>
<td>Irrigated</td>
</tr>
<tr>
<td>S_Asia</td>
<td>-40</td>
<td>22</td>
<td>-18</td>
<td>14</td>
</tr>
<tr>
<td>CHN_MNG</td>
<td>-23</td>
<td>3</td>
<td>-20</td>
<td>2</td>
</tr>
<tr>
<td>US</td>
<td>-3</td>
<td>12</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>S_Amer</td>
<td>2</td>
<td>28</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>SSA</td>
<td>3</td>
<td>118</td>
<td>121</td>
<td>3</td>
</tr>
<tr>
<td>Rest of world</td>
<td>-4</td>
<td>39</td>
<td>35</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>-67</td>
<td>223</td>
<td>156</td>
<td>32</td>
</tr>
</tbody>
</table>
- Global cultivated cropland area in 2006: 1,486 Mha
≈ 1.5 US

- With sustainability constraint, global cropland area in 2050
≈ 1.5 US + Alaska

- Without sustainability constraint, global cropland area in 2050
≈ 1.5 US + Alaska + Texas
Grid-level irrigated cropland change (10^3 ha/grid)

Global sum = -67 Mha
Results

Cropland area change, 2050 relative to 2006
WITH adaptations
- Inter-basin transfer: keep China from losing 10 Mha cropland
- Inter-basin transfer: keep China from losing 10 Mha cropland
- R&D: reduce global cropland expansion by 50% (156 → 98)
- Inter-basin transfer: keep China from losing 10 Mha cropland
- R&D: reduce global cropland expansion by 50% (156 → 98)
- Trade: alter the spatial distribution of cropland expansion
Summary

- The interaction between physical and socio-economic drivers makes possible different future scenarios. Under each, the targeting and consequences of sustainable irrigation also differ.

- Adaptations affect food supply in a similar manner, but have different implications for land use change.

- Integrated grid-resolving modeling has the potential to identify sub-national variations and assist decision-making at the local level.
Thank you!
liu207@purdue.edu
Current model features:

- 16 regions, 2 sectors, 4 commodities
- globally 58447 grids (30 arc-min)
- constant elasticity of substitution production function
- split irrigated and rainfed cropland area and crop output, grid-specific irrigation intensity (m^3/ha)
- Armington substitution between domestic and imported commodities

Additional grid-specific characteristics under development

- land supply elasticity
- yield function
- nitrogen leaching function
- groundwater mining
References
