Macroeconomic drivers of baseline scenarios in dynamic CGE models: review and guidelines proposal

Jean Fouré\(^1\), Angel Aguiar\(^2\), Ruben Bibas\(^3\), Jean Chateau\(^3\), Shinichiro Fujimori\(^4\), Marian Leimbach\(^5\), Luis Rey-los-Santos\(^6\), Hugo Valin\(^7\)

\(^1\)CEPII, \(^2\)GTAP, \(^3\)OECD, \(^4\)NIES and Kyoto University, \(^5\)PIK, \(^6\)DG-JRC, \(^7\)IIASA

June 2018
Introduction

Fouré et al. CEPII, GTAP, OECD, NIES and Kyoto University, PIK, DG-JRC, IIASA

Macroeconomic drivers of baseline scenarios
Motivation I

- Current trends in CGE and baseline model comparison/convergence
 - The GTAP database is a reference for base year data
 - Energy Modelling Forum (EMF): energy-related modelling and data issues
 - Agricultural Model Intercomparison and Improvement Project (AgMIP)

- No comparable initiative regarding baseline in CGE models
 - Best candidate: IPCC’s Shared Socioeconomic Pathways (SSPs), narratives for baseline scenarios
 - The SSP initiative do not discuss the implementation (a fortiori in CGE models)
Motivation II

- GTAP workshop “Shaping long-term baselines with CGE models”
 - Held in January 2018
 - Our focus: Macroeconomic drivers
Results of the contributions: 24 teams/models responded:
Introduction

What are “macroeconomic drivers”?

- Obvious: sources for projection data
 - GDP projections
 - Factors
- But also details on implementation
 - Often, the projections are embedded in the model through specific assumptions
 - The implementation of external projections can also be different
- Objective to stay generic-enough to fit all models
Introduction II

What are not “macroeconomis drivers”?

- Structural change
 - Calibrating supply-side driven structural change in CGE baselines (lead author: J. Chateau)
 - Demand side and consumer behavior (lead author: M. Ho)
- Issue-specific considerations
 - Energy and environment (lead author: T. Fæhn)
 - Agriculture and land-use (lead author: K. Kavallari)
 - Trade baseline (lead author: E. Bekkers)
Outline of the presentation

1. Introduction
2. Review of practices
3. Issues
4. Research agenda
5. Conclusion
Review of practices

Fouré et al.

Macroeconomic drivers of baseline scenarios
There are two alternatives:

- Assume a certain trajectory in productivity within the CGE
- Calibrate the productivity in the baseline by targeting external GDP projections
 - Taken from external sources
 - and/or generated by a Solow growth model
GDP – Methodology II

Solow (1957)-based growth models behind projections

- Aggregated production function, accumulation of factors (supply-side) and productivity
 - Assume / estimate behavioral relations
 - Project accumulation and deduce GDP

- Two examples in the literature:
 - Duval and De La Maisonneuve (2010):
 \[Y = K^\alpha (A \times h \times L)^{1-\alpha} \]
 - Fouré et al. (2013):
 \[Y = \left[(A \times K^\alpha \times L^{1-\alpha})^{\frac{\sigma-1}{\sigma}} + (B \times E)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}} \]
GDP – Projection sources

- More diversity: 9 possible sources across models
 - Most common: “SSPs” (5 different scenarios)
 - SSP projections producers: IIASA, OECD, PIK, CEPII
 - Alternative: Only one baseline, sources mentioned only one or twice
 - 2 models mix different sources together
 - 2 model allow for several sources
- 3 models have endogenous GDP growth possible (i.e. technological assumptions)
 - Iterative convergence with macroeconomic model (1)
 - Time series trend (as an alternative in 2 models)
GDP – Implementation

- Methodology is common: an endogenous productivity is calibrated in the baseline exercise.
- But the factors impacted by this productivity vary.
Many features were “Optional”, I retained the default (or “best”)

For each factor and model, four alternatives are considered and compared:
- Fixed (constant from calibration value)
- Exogenous (not constant but imposed exogenously – ad-hoc or sourced)
- Endogenous (with specific mechanisms, e.g. supply function)
- Calibrated (endogenously calibrated to target another variable that is exogenous, e.g. natural resources and fossil fuel prices)

Plus two non-response categories:
- Not relevant: the model does not have this specific factor (e.g. natural resources included in capital)
- Not provided: the templates suggest the feature is present, but baseline assumptions are not provided :(.

Fouré et al.

Macroeconomic drivers of baseline scenarios
Rules for factor supply in the baseline I

Fouré et al. CEPII, GTAP, OECD, NIES and Kyoto University, PIK, DG JRC, IIASA

Macroeconomic drivers of baseline scenarios
Rules for factor supply in the baseline II

- Compared to GDP assumptions:
 - Much more diversity, not only in data sources
 - A bit less transparency (cf. “Not provided” category)
 - This is a tentative classification based on the contributed templates only, not yet on the full documentation.
 - Very dependent on the model’s main focuses (e.g. Migration or Water)
Regarding the labor force, several issues at stake:

- Population
- Participation to the labour force
- Skill level
- International migrations
- Inner migrations (e.g. rural to urban)
Labor II

Population:

- Only 2 global sources for population: IIASA (SSP scenarios) or UN Population Division (with variants)
 - UNPD 4 – IIASA 7
 - 4 models allow to switch from one source to the other
- Country-level sources otherwise (Canada, U.S.), with sub-national data
Labour III

Labour force:

- Close to consensus...
 - Exogenous growth rate, from external sources
 - UN Population Division, IIASA SSP, ILO
 - Exceptions: 2 models endogenize participation (competition with leisure)
- ... but is it a best practice?
 - What is limiting to endogenizing participation and employment? In real life, depends on economic growth, wages, sector specialization, etc.

Type:
- Endogenous
- Calibrated
- Exogenous
- Fixed
- Not provided
- Not relevant

Fouré et al.

Macroeconomic drivers of baseline scenarios
Skill level:

- GTAP provides 5 skill levels, but often aggregated to 2 only
- Only 4 models target differently skills in the baseline
- 24 others: working-age population (or population)
- Why?: problem of data availability? (but: IIASA SSP, EconMap) or consistency between education (IIASA,EconMap) and occupations (GTAP)?
Labor V

Migrations

- International migrations
 - Even less common explicit feature
 - Only mentioned explicitly once, where it is endogenous
 - Although implicit in any population projection
 - Is it a good thing?
 - Migration have impacts on savings, education level, etc.
 - Consistency with other baseline assumptions?

- Inner migrations
 - TBC

Type

- Endogenous
- Exogenous
- Calibrated
- Fixed
- Not provided
- Not relevant
Land

- **Method:** around 50% endogenous, 50% exogenous
 - Endogenous: Supply function, not always the same (logistic, isoelastic, not indicated)
 - Exogenous: From specialized models (IMPACT, MagPIE, IMAGE, GLOBIOM), not uniform

- **Which one should be preferred?**
 - What should be preferred between a simple endogenous supply function or a more refined exogenous source?
 - Endog.: Do we have rationale to choose a specific supply function?
 - Exog.: Any distinct features from the different sources?
Natural resources – Fossil

- **Method:** Close to consensus...
 - Natural resources calibrated to match fossil fuel prices (external sources, IEA WEO) or other variables (energy supply, oil reserves)
 - Alternative: Endogenous reserves depletion (resources supply function or extraction cost curves)
 - (2 models calibrate on capital or GDP growth)

- **but consensus not necessarily a best practice**
 - **Drawbacks**
 - Fossil fuel demand heavily depends on economic activity, what is the consistency with using external source?
 - Although the best potential source to my knowledge, WEO prices projections have been known to be wrong (mechanisms not consistent with economic theory?)

- **Limits to endogenizing?**
 - Data: is information available and reliable?
 - Modelling: How to account for strategic interactions (e.g. OPEC)?
Natural resources – Other (Fishery, Forestry, Minerals)

- (when documented!) two competing alternatives: fixed or endogenous?
 - Fixed: to GTAP values
 - Endogenous: Supply curve (kinked)
 - (2 models calibrate on capital or GDP growth)

Discussion

- Is it relevant to do something when not focused on these sectors?
- If it is, any rationale? (no details in contributed templates)
The issue with capital is more complex

- Savings → investment, but there are international flows (current account)
- Investment → capital, at the sector level with depreciation
- Large heterogeneity between models

Savings:

- Majority for “exogeneity”
 - i.e. incl. endogeneity with (exogenous) population determinants
 - but: significant share of models consider savings fixed at calibration value

Is it a best practice?

- well documented in the literature, simple relations with ageing available but also exogenous projections
- but: consistency with growth assumptions
Current account and total investment (linked through $S - I = CA$)

- I and CA exogenous
 - Most common approach (8): no CA imbalances because $I = S$
 - Most common alternative (4): Specific assumptions (ad-hoc convergence, exogenous source for I/Y or capital)

- Alternative: I and CA endogenous
 - Based on return on investment, or fixed real exchange rate

Is there a best practice?

- In the data, imbalances are not decreasing over time.
- Simple accounting relation $S - I = X - M$
- Is it better to rely on macroeconomic determinants or to endogenize in the model?
Sector allocation of investment

- Near perfect consensus
 - All models seem to consider an endogenous allocation depending on the return on investment
 - 3 exceptions: exogenous allocation (1) or energy-specific investment modification (2)

- Is it the best alternative?
 - e.g. new backstop technologies will require specific investment

Capital depreciation

- Lack of explicit documentation
 - Does that mean: fixed at GTAP calibration level?
 - Models which responded: constant (ad-hoc or PWT, 2.5) or calibrated (no capital abandonment, 1)
Water

- An uncommon feature, with baseline not documented in the templates
 - Only 2 models are explicit: exogenous (indus., irrigation) and endogenous (municipal) or calibrated.

- Is it a good thing?
 - Should water resource be considered a minimal feature for models with agricultural results?
 - If yes, what are then the limitations? data, baseline?

<table>
<thead>
<tr>
<th>Type</th>
<th>Endogenous</th>
<th>Exogenous</th>
<th>Calibrated</th>
<th>Fixed</th>
<th>Not provided</th>
<th>Not relevant</th>
</tr>
</thead>
</table>

Fouré et al. Macroeconomic drivers of baseline scenarios

CEPII, GTAP, OECD, NIES and Kyoto University, PIK, DG JRC, IIASA
Issues

Fouré et al. CEPII, GTAP, OECD, NIES and Kyoto University, PIK, DG-JRC, IIASA

Macroeconomic drivers of baseline scenarios
Very often well documented sources, often with published papers.

Minimal feature: indicate which data source the model is using (incl. GTAP version) and which baseline data.

Limitation: When several sources are mixed together (e.g. several sources for GDP growth), documentation was less clear.

Maybe in the model technical documentation?
Replicability

- Very good news: the time when people were crafting their baseline on their own, with no public availability, seems to be over
 - But maybe there is a selection bias in the workshop?
Sensitivity analysis

- IIASA SSP database itself a good example: three outcomes of the same assumptions are provided
 - Do the users implement the three and compare?
 - But what about alternative interpretations of SSP narratives?
- Only 3 models allow explicitly for sensitivity analysis for GDP baseline, 4 for Population baseline
 - The example of the SSPs show how results depend on the baseline.
- 2 models have endogenous GDP growth, so sensitivity analysis could also be conducted, but is it?
Methodology

Model assumptions and sources (IMO no “best” alternative)

- What makes the difference between all-factor-augmenting and labor-augmenting TFP? Is it relevant?
- Is it better to have one all-sector TFP or relatively ad-hoc assumptions on sector-specific TFP?
Research agenda
Research agenda

- Thorough review of the literature
- Illustration of key issues
 - Comparison of projection sources (SSP scenarios)
 - [JF: I will add a graph on SSP comparison]
 - How some assumptions impact the results
 - [JF: If enough time, I will add an illustration on current account using MIRAGE]
Best practices and low-hanging fruits?

For the moment, only a **tentative** summary of the workshop:

- **Consistency**
 - Ensure the consistency between the different assumptions (e.g. are the current account assumptions the same in the model and in the macro model underlying GDP projections?)

- **TBC**
Thank you for your attention
References I

