Impact of Trade Liberalization on the Japanese Agri-food Sectors: A General Equilibrium Analysis with Farm Heterogeneity and Product Differentiation

April 1, 2019

Nobuhiro Hosoe (National Graduate Institute for Policy Studies)†
Yuko Akune (Nihon University)

Abstract

Manufacturing industries have attracted considerable research attention in state-of-the-art trade studies with findings of firm heterogeneity and product differentiation, à la Melitz. In contrast, it is widely assumed that agricultural sectors produce homogeneous goods. However, they do in fact produce new goods by product differentiation through breeding, food processing, quality-upgrading, and branding. In reaction to the recent globalization and increasing penetration of imported agricultural goods, the Japanese government has sought strategies to promote its domestic agri-food sectors by means of product differentiation and export promotion. In this computable general equilibrium study, we seek to identify means by which Japan’s agricultural sectors can survive in the globalized economy and increase their exports; we focus on strategies that incorporate product differentiation and farm/firm heterogeneity. Our simulation experiments show that agricultural trade liberalization would not increase Japan’s agricultural exports but would increase food exports; and that food trade liberalization would promote food exports and some agricultural exports. In both liberalization scenarios, trade liberalization would increase domestic agri-food production. This finding affords evidence of the relevance of product differentiation strategy (especially as applied to food processing and exportation) but not of agricultural export promotion strategy.

Keywords

Agri-food Exports; Firm Heterogeneity; Product Differentiation

* We thank Tomoki Ishikura and Mototsugu Fukushige for their helpful comments and suggestions. This study is partly supported by JSPS KAKENHI grant (Nos. 16K03613, 16K07907, 16KT0036, 19K01622). The usual disclaimers apply.

† Corresponding author. 7-22-1 Roppongi, Minato, Tokyo 106-8677, Japan. Email: nhosoe@grips.ac.jp.
1. Introduction

Agri-food trade liberalization has not been expected to be beneficial for Japan in most multilateral and bilateral free trade agreements (FTAs) in which Japan has participated. Japan’s agricultural sectors, like those in many other industrialized countries, are minor and traditional, and have contracted over time in the face of severe competition with foreign agricultural exporters. The GDP share of agriculture in Japan, 1.9% in 1994, when the Uruguay Round agreement was signed, fell to 1.2% by 2016. Political power was wielded to keep agricultural border barriers and government supports high. That protection provided room for many low-productivity small farmers to survive. Anticipating more severe competition following the implementation of the Uruguay Round agreements, the Japanese Government spent large amounts of special budget on their promotion programs. That approach proved inefficient and was sometimes abused (Nikkei (2016a, 2016b), Tokyo Foundation (2014)); it did not contribute to revitalization of the agricultural sectors.

Participating in the Trans-Pacific Partnership (TPP), Japan’s Ministry of Agriculture, Forestry and Fisheries (MAFF) decided to switch its policy focus to acceptance of free trade, rather than maintaining protection levels. It is expected that even under intensified competition with foreign producers, the country’s agri-food sectors will survive thanks to two strategies: an export promotion strategy and a product differentiation strategy. MAFF expects that Japan’s agri-food products, such as wagyu beef, fruits, and Japanese sake, are unique and competitive in the international markets, and thus place less emphasis on the survival of traditional crops, especially rice. The export potential of Japan’s agri-food products has been studied for the cases of selected products, major geographical production areas, and brands, with Aomori apples being perhaps the best known of the most successful cases (Tanaka (2006), Akashi and Tanemura (2006), and Nakamura et al. (2011)). Shimowatari (2018) has studied several projects for the promotion of agri-food exports to the Asia-Pacific region. The MAFF (2018) commends successful agricultural and food exporters. However, those success stories are all individual business-level cases, and examinations are
sporadic and limited to a small number of successful case studies—certainly not firm evidence of the macro-
level impact of success in export and product differentiation.

From the strategic viewpoint of FTA negotiations, the Japanese Government needs to identify
countries with which Japan should establish FTAs; and agri-food sectors in which Japan is highly
competitive in domestic and international markets. Currently, Japan’s agri-food exports are concentrated
on East Asia, followed by the North American Free Trade Agreement (NAFTA) region, Southeast Asia,
and China (Table 1.1). Exports are far smaller than imports and are dominated by food products. Although
it might be possible to interpret this small achievement of Japan’s agri-food exportation as an indication of
strong potential for future growth, Japan’s agricultural export promotion is not a clear-cut success. In the
literature, several macroeconomic or general equilibrium studies have examined Japan’s agricultural
policies under freer trade, but they mostly examined the case of rice and other crops and/or food security
issues (Tanaka and Hosoe (2011), Lee and Itakura (2014), and Hosoe (2016)).

Studies on agri-food products other than rice and major crops have focused on selected products narrowly defined by product
variety and/or geographical production areas, and do not afford comprehensive evidence. For example,
other than the abovementioned studies on apples, Peng and Cox (2006) simulate trade liberalization of dairy
products in Asia; and Shuto (2011) estimates export competitiveness of the Japanese food industry in Asia,
using Balassa’s (1965) revealed comparative advantage (RCA) index.

1 Even if a study is not focused on the agri-food sectors, if a multi-sectoral model is used it can identify policy
implications about Japan’s agricultural policies, and can identify agri-food sectors of interest. See, for example, Okubo
et al. (2018) and Petri et al. (2012).
The presence of the agricultural sectors is smaller than that of the food sectors not only in the export markets but also in the domestic market. MAFF (2016) reports that processed food consumption constitutes 51% of total household consumption, fresh food consumption only 16%. However, it should not be assumed that the agricultural and food sectors compete with each other; rather that they are linked tightly and work complementarily. Agricultural products are mostly used as intermediate inputs in the food industry, rather than for direct consumption by households. MAFF (2016) reports that in 2011 in Japan, 59% of total agricultural production was shipped to the food industry.\footnote{Aside from agricultural product use for food production purposes, 31% was used for final consumption; 9% went to the restaurant industry.} MAFF paid insufficient attention to the complementary role of the food sectors and the agricultural sectors, and the linkages between them, in its heavy policy interventions in the agricultural sectors. For example, MAFF export promotion policies place stronger emphasis on agricultural exports than food exports. As of the end of 2018, more than 70% of product names registered in Japan’s Geographical Indication (GI) protection system were those of

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
 & China & East Asia & Southeast Asia & NAFTA & Latin America & South Asia & EU & Europe & ROW \\
\hline
Japan’s Exports & & & & & & & & & \\
Vegetables and Fruit & 1 & 27 & 2 & 2 & 0 & 2 & 1 & 0 & 2 \\
Livestock & 5 & 59 & 32 & 1 & 0 & 0 & 4 & 0 & 1 \\
Meat Product & 4 & 15 & 4 & 6 & 1 & 1 & 18 & 3 & 3 \\
Dairy Product & 1 & 10 & 4 & 2 & 0 & 0 & 2 & 0 & 3 \\
Other Food & 202 & 1,093 & 422 & 553 & 18 & 35 & 134 & 43 & 150 \\
Total & 214 & 1,204 & 464 & 564 & 19 & 38 & 158 & 47 & 158 \\
\hline
Japan’s Imports & & & & & & & & & \\
Vegetables and Fruit & 154 & 35 & 220 & 275 & 23 & 10 & 16 & 2 & 122 \\
Livestock & 319 & 69 & 28 & 179 & 26 & 13 & 88 & 13 & 145 \\
Meat Product & 989 & 47 & 889 & 3,788 & 1,345 & 2 & 967 & 15 & 1,705 \\
Dairy Product & 8 & 12 & 58 & 213 & 27 & 1 & 399 & 12 & 605 \\
Other Food & 5,383 & 1,527 & 5,587 & 4,675 & 2,256 & 924 & 3,260 & 1,757 & 1,507 \\
Total & 6,853 & 1,690 & 6,781 & 9,129 & 3,676 & 950 & 4,729 & 1,798 & 4,084 \\
\hline
\end{tabular}
\caption{Japan’s Agri-Food Trade [Unit: million USD]}
\end{table}

Source: GTAP Database version 9a (base year=2011)
This strong policy preference for agricultural and aquatic products may reduce the effectiveness of promotion policies.

The second strategy is product differentiation to make the agri-food sectors more competitive in the domestic market and enhances their export potential. That product differentiation is achieved through producer activities such as breeding, quality-upgrading, food processing, and even synergizing agri-food production with other local industries and enterprises, in areas such as restaurant, recreation, and tourism. The success of those differentiation measures depends on various factors in the domestic and international markets. Moreover, given the observed large variation in productivity or entrepreneurship among farms/firms, only exceptionally productive farms/firms can succeed. There is a strong need for a framework for assessing the success of product differentiation strategies for promotion of Japan’s agri-food products.

For the comprehensive analysis of agri-food policies with micro-level industry detail and macro-level consistency, CGE models are rather useful, although many earlier agri-food policy analyses using conventional CGE models did not consider product differentiation or farm/firm heterogeneity. For example, agricultural productivity was assumed to be constant or determined by exogenous factors such as weather conditions and climate. More recently, some studies do give consideration to the above factors; for example, Tanaka and Hosoe (2011) and Hosoe (2016) apply a Monte-Carlo simulation method to describe productivity shocks, and Lee and Itakura (2018) take account of a trend of productivity improvements.

3 The Act on Protection of the Names of Specific Agricultural, Forestry and Fishery Products and Foodstuffs Act, also known as the Geographical Indication (GI) Act, which went into force in 2015, provides intellectual property protection of names for specific agricultural, forestry and fishery products and related processed products. These products are registered to certificate their quality, reputation, and other established characteristics in combination with their geographical origins. GI protection is effective not only in Japan but also in other countries which are engaged in trade agreements with Japan. For example, the 2019 Japan-European Union (EU) Economic Partnership Agreement ensures GI protection for agricultural products and foodstuffs: 48 Japanese GIs and 71 EU GIs. Among those, 71% of the Japanese GIs are for agricultural and aquatic products; in contrast, 88% of the EU GIs are for processed foods. Moreover, there are eight Japanese GIs and 139 EU GIs for liquor products.
arising from learning-by-doing prompted by trade liberalization. In contrast, recent state-of-the-art trade theory with firm heterogeneity (a.k.a. new new trade theory), initiated by Melitz (2003) and Eaton and Kortum (2002), implies that productivity varies significantly among firms and that heterogeneity generates various trade and production patterns.

These analyses focus on manufacturing sectors with firm heterogeneity, intensive intra-industry trade, and product differentiation, while assuming that agricultural sectors are a homogeneous industry lacking those special features. However, as Takechi (2015) and Kano et al. (2013) show, agricultural products are highly differentiated through activities such as breeding, quality control, and detailed product grading. Productivity has always attracted considerable attention in agricultural analysis. The US Department of Agriculture measures productivity of agricultural sectors by means of various indicators, including total factor productivity (TFP) (Ball et al. (2013), Shumway et al. (2016)). Productivity varies widely among farms and correlates positively with farm size in developed countries and negatively in developing countries (Sumner (2014)). Akune and Hosoe (2018) estimate TFP for the Japanese agricultural sectors using farm-level microdata and confirm large variations in TFP among farms. Fontagnué et al. (1997) and Bojnec and Fertő (2016), and Kiminami and Kiminami (2000), find intra-industry trade in agri-food products, for Europe and East Asia, respectively, though on a smaller scale for intra-industry trade than for the manufacture of products. Japan’s food industries have become more dependent on imported agri-food inputs as a result of participation in global food value chains. Their imported input share rose steadily, from 16% in 1980 to 30% in 2011 (MAFF (2016)).

The results of the above studies indicate that the new new trade theory framework is also useful for our agri-food analysis. In the literature, Heerman et al. (2015) apply the Eaton and Kortum (2002) model in their analysis of agricultural free trade in the Asia-Pacific region. Rau and Tongeren (2009) and Luckstead and Devadoss (2016) employ Melitz-type partial equilibrium models to analyze the impact of free trade in meat products between the 15 European Union (EU) member countries and Poland, and that
of the Transatlantic Trade and Investment Partnership (TTIP) on processed food trade between the US and
the EU, respectively. However, these studies are partial equilibrium analyses on a specific product/industry,
and do not consider inter-industry agri-food linkages.

With that background, we develop a Melitz-type world trade CGE model, where productivity
and number of producers and exporters are endogenously determined, to simulate hypothetical FTAs in
agri-foods between Japan and several major countries/regions. Using a general equilibrium model allows
us to describe agri-food industries which are linked and host heterogeneous farms/firms that conduct
product differentiation. Here we assess the potential of the Japanese agri-food sectors and their survivability
in the globalized agri-food market.

Section 2 below presents an outline of our Melitz-type CGE model and the data and assumed
parameters used in the construction of the model. Section 3 explains the FTA scenarios that feature in our
policy experiments. Section 4 examines the results of the simulations. Finally, Section 5 concludes with a
discussion of the relevance of the two strategies for Japanese agri-food sectors.

2. Model

We employ a Melitz-type CGE model, where we take account of love of variety and product
differentiation, à la Dixit and Stiglitz (1997), and farm/firm heterogeneity in productivity. This is a static
model, distinguishing 10 countries/regions and 14 goods (Table 2.1). The static standard CGE model
developed by Hosoe et al. (2010) for an open single country is extended to develop this world trade model
with Melitz-structure (Hosoe (2018)) and calibrated to the GTAP Database version 9a, whose base year is
2011, with the Armington (1969) elasticity provided in the same database (Hertel (1997))\(^4\).

\(^{4}\) For the details of the model, see the appendix of Hosoe (2018).
We assume that the five agri-food sectors of interest here, as well as manufacturing sectors, have Melitz structure. The two key parameters that characterize Melitz structure are a shape parameter of the Pareto distribution of firm productivity k and elasticity of substitution among varieties σ^{MLZ} for the agri-food sectors. For the five agri-food sectors, those parameters are set by taking into account the empirical estimates (with Japanese farm-level microdata) by Akune and Hosoe (2018). The parameters for the manufacturing sectors are those by the structural model estimate by Balistreri and Rutherford (2013) ($k=4.6$) and the estimate by Bernard et al. (2003) ($\sigma^{MLZ}=3.8$), following Hosoe (2018). Due to data limitations, we use these values across all the countries/regions.

5 In that study, TFP is estimated by the Olley-Pakes (1996) method. The elasticity of substitution among varieties σ^{MLZ} is estimated following Crozet and Koenig (2010). We assume $k=2.40$ and $\sigma^{MLZ}=1.98$ for vegetables and fruits and $k=2.20$ and $\sigma^{MLZ}=2.44$ for livestock, which satisfies the parameter condition $k+1>\sigma^{MLZ}$ in the original Melitz model.

6 We develop an alternative CGE model without Melitz structure for the five agri-food sectors of our interest and run the same policy experiments. With this alternative model setup, we find quantitatively much smaller but qualitatively same impacts. We also conduct a sensitivity analysis with respect to the assumed parameters and find our results qualitatively robust. Details of the assumed parameters and the results of the sensitivity analysis are provided in the Appendix, available upon request.
Table 2.1: Regions and Sectors in the Model and Simulation Scenarios

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Sector</th>
<th>Melitz structure</th>
<th>FTA simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>Paddy Rice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Wheat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Asia</td>
<td>Vegetables and Fruit</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>Livestock</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NAFTA</td>
<td>Other Agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>Meat Product</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>South Asia</td>
<td>Dairy Product</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>European Union (EU)</td>
<td>Processed Rice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Europe and Russia</td>
<td>Other Food</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Rest of the World (ROW)</td>
<td>Mining</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Light Manufacturing</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heavy Manufacturing</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transportation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.1 shows the structure of the Melitz-CGE model created with nested-constant elasticity of substitution (CES) functions. The k-th variety produced by the i-th sector located in the r-th region is sent to the s-th region. $Q_{T,k,i,r,s}$ is aggregated to a variety aggregate $Q_{T,i,r,s}$. In production, a firm incurs a per-variety fixed cost $F^{MLZ}_{i,r,s}$ and a firm setup cost $H^{MLZ}_{i,r,s}$. These fixed costs are paid with the final output. These fixed costs, along with love of variety preference, bring an economy of scale.
Figure 2.1: Model Structure

The variety aggregate shipped from various regions $Q_{r,0,6}, Q_{r,6,0,6}, ...$ is combined to form Armington’s (1969) composite good Q_{r}. This is sold to r-th region domestic agents such as the representative household, the government, investment, and intermediate users. Exports are determined by the production of the abovementioned variety shipped to the foreign region s. (As exporting is determined by this process, we do not need a constant elasticity of transformation (CET) function as is often used in conventional CGE models.) Splitting the aggregation process into two stage CES nests—among varieties and between imports and domestic goods—we allow their elasticity parameters σ_{r}^{MLZ} and σ_{r}^{ARM} to differ. We employ the abovementioned elasticity values for the former and those provided by the GTAP Database for the latter. In contrast, many other Melitz-type CGE models (e.g., Dixon et al. (2018)) consider only one-stage nest, following the original setup by Melitz (2003).

In the balance of payments constraint, current account deficits are assumed to be constant in the
rest of the world’s (ROW) currency term, while foreign exchange rates are flexibly adjusted. Three types of primary factors (capital, skilled and unskilled labor) are distinguished. Capital is sector-specific and thus immobile across sectors; labor is mobile. Land, which is a major primary factor employed in agriculture, is included in capital and thus immobile.

3. Simulation Scenarios

We assume Japan’s FTAs individually with the eight partners listed in Table 8.1. (We do not consider ROW as an FTA partner.) To determine what type of FTAs could contribute to the promotion of Japan’s agri-food exports and domestic production, we specifically consider two types of FTAs (Table 2.1): an agri-FTA, covering vegetables and fruit, and livestock; and a food-FTA, covering meat products, dairy products, and other foods.7

The depth of border barrier reduction for these sectors is also an important issue in FTAs. In this regard, we employ a hypothetical simple scenario that assumes mutual 10% point tariff cuts between the two FTA parties.8 Although agri-food sectors are relatively strongly protected by import tariffs, according to the GTAP Database version 9a the observed 2011 tariff rates are below 10% in some countries and sectors. In such a situation, negative import tariffs (i.e., import subsidies) are assumed for simulation

7 Incidentally, our study does not take into account trade liberalization of crops, such as rice and wheat, which have often been examined in previous studies, as mentioned above. There are two reasons for omitting these crops: they have been well studied; and they are land-intensive crops and are not expected to become more competitive in the export markets, given the scarcity of farmland in Japan. Also, they are still highly protected by border barriers but are “politically sensitive” (Deardorff (2017), Deardorff and Sharma (2018)). We can hardly expect their liberalization without accompanying political commitments.

8 For example, a tariff rate of 15% in the status quo is reduced to 5%.
exercise simplicity.9 We assume no changes in border barriers in the other sectors or in barriers between FTA members and non-FTA members.

4. Simulation Results

FTAs would increase Japan’s agri-food exports generally (Figure 4.1), while the magnitude would differ by region and sector. Comparing impacts among the FTA partners, FTAs with China, Southeast Asia, and NAFTA would markedly promote exports. The agri-FTAs would, contrary to our expectation, decrease Japan’s agricultural exports but increase food exports, which are not liberalized in the agri-FTAs. In contrast, the food-FTAs would increase food exports in all FTA cases. In terms of the change rate, meat and dairy products show a marked increase. It should be noted that as the other food sector is sizable in the status quo, its expansion would be found to be the largest in volume.10 In all the food-FTAs, vegetable and fruit exports would incur a negative side effect, though not so large. Similarly, food-FTAs would negatively impact livestock exports, except for those with China and Southeast Asia.

The above simulation results show that agri-FTAs do little to achieve export promotion, though food-FTAs would have some effect. This implies only limited success of the Japanese Government’s policy emphasizing agricultural export promotion. However, this is not necessarily bad news, considering the agri-food linkage described in the general equilibrium model. That is, when an FTA partner increases agricultural exports, they have to sacrifice supply to the domestic food sectors (Figure 4.2). As agricultural products are mostly supplied to food sectors as intermediate inputs, such supply destination switching leads to a decrease

9 This may sound a bit unrealistic in terms of usual FTA practice. This could also be interpreted as a reduction of nontariff barriers, if we can ignore the income effect of tariff revenues. Agri-food nontariff barriers are observed to be very high and to have a good margin for reduction, except for sanitary and phytosanitary measures.

10 Value changes of exports, imports, and domestic output are shown in the Annex, available upon request.
in domestic food production by the FTA partners. Japan would find an export opportunity to fill the partner’s food supply-demand gap. This shows that Japan has comparative advantage in food products, rather than agricultural products. Agri-food input-output linkage enables Japan to exploit its comparative advantage in food products under freer trade.

This can be confirmed by examining output changes in Japan (Figure 4.3). Irrespective of FTA partner choice and coverage of trade liberalization, Japan’s production would expand in all five agri-food sectors. The magnitude of these agri-food output gains differs by sector, as it is correlated with export changes. That is, output would increase most significantly in FTAs with China, Southeast Asia, and NAFTA. The food-FTAs would bring larger output changes than the agri-FTAs. It is also noteworthy that some sectors would be affected even if they were not directly impacted by FTAs. Examining impact by sector, it is observed that meat products and other food sectors would expand markedly under all FTAs.\(^{11}\) In contrast, the vegetable and fruit sector, which has been identified by many agri-food business studies as a promising sector with high export potential, would perform as poorly as the dairy products sector. Overall, as long as we assume a simple scenario of 10 percentage point tariff cuts, our simulation results suggest that the Japanese agri-food producers would not suffer, but rather would gain from agri-food FTAs in terms of their domestic production.

While exports of food products would generally increase, and at the same time those of agricultural products would decrease, production for all the agri-food sectors would increase. That increase would be the result of the domestic producers switching their sales destinations between the domestic and export markets. We can confirm this projection by examining the change in the number of varieties by sales destination. Figure 4.4 shows the change in the number of firms induced by FTAs, when both agri-FTAs

\(^{11}\) Due to variations in output levels in the status quo, the value change of the other food sector is found to be largest, followed by that of the meat products sector. The details are shown in the Appendix, available upon request.
and food-FTAs are assumed, for simplicity of the figure. On the one hand, the number of varieties of vegetables, fruits, and livestock in particular exported to the FTA partners would decrease and that of exports to domestic users would increase. On the other hand, meat products and other food sectors would produce more export varieties for the FTA partners, intensifying product differentiation. This implies that only the food sectors would succeed in terms of exportation. While the domestic agricultural producers would compete with foreign producers by creating their niche through product differentiation in the domestic market, they would pursue indirect exportation through food processing, rather than their own direct exportation to the international markets.

Reviewing the simulation results presented so far, one may wonder whether (rather than using CGE simulations) Japan’s export patterns, shown in Table 1.1, might be of immediate use in predicting the results of FTAs with the abovementioned promising FTA partners (China, Southeast Asia, and NAFTA). However, the same table provides a counter-example, East Asia, consisting mainly of South Korea, Taiwan, and Hong Kong. Based on export patterns, this region should also be found to be a good potential destination for the export of Japan’s agri-food products. In fact, this does not happen in our simulations. The pattern of Japan’s imports, rather than that of its exports, provides a clue to this puzzle. Japan imports almost as much from East Asia as it exports to those countries. Our model is a macroeconomic or general equilibrium model; when countries face a balance-of-payments constraint, free trade increases both exports and imports for both parties in an FTA. We should not focus narrowly on the benefit from the partner’s tariff reduction that induces an increase in Japan’s exports. Japan also obtains an opportunity to increase its exports to the partner in a volume as large as that of the increases in imports. As we assume that the current account imbalance is intrinsically determined by dynamic factors of investment and savings and thus does
not change, an increase in imports must be matched by an increase in exports. In light of the balance of payments constraint and foreign exchange rate adjustments, an increase in agri-food imports depreciates the domestic currency. This depreciation improves the competitiveness of Japan’s agri-food exports. This effect cannot be captured by case studies on selected agri-food products or by partial equilibrium studies, but only through general equilibrium analysis.

Thus far we have analyzed the impact of FTAs on agri-food producers. We should also examine the impact on consumer welfare. Equivalent variations measure the change in representative household welfare induced by FTAs, expressing the impacts in terms of expenditure changes (Figure 4.5). In all eight cases, consumers would benefit from FTAs. The welfare impact is found to be relatively large for FTAs with China, Southeast Asia, and NAFTA, followed by that with the EU, as can be seen from the impact on producers. No more than 15% of total FTA impact would be attributable to the agri-FTAs; the food-FTAs are found to be far more important. This reflects the large share of household consumption occupied by food products. Frequently, concern about how much farmers could be affected by free trade leads to decreased emphasis on consumer gains. However, these welfare indicators demonstrate how much consumers would lose if the border barriers were kept high to protect the farmers.

5. Concluding Remarks

Japan’s agri-food policies, a mixture of industrial, rural, and food policies, are oriented to supporting the domestic farmers and agri-food industries under increasing import pressure. Agri-food business analyses referring to selected case studies tend to highlight the success of those agri-food policies.

12 As the current account deficit is a de facto receipt of international transfers, changes in which immediately affect household welfare (Hosoe et al. (2010)). In this comparative statics, we assume the current account balance is constant to make the welfare implication clear.
Indeed, such studies can shed light on one aspect of the agri-food policies and their effects, but they do not provide a comprehensive evaluation from a macro perspective. This study employs a general equilibrium model to determine whether trade liberalization would undermine Japan’s agri-food industries and what pathways—product differentiation vs. export promotion—are promising under freer trade.

Simulating FTAs, we find freer trade would indeed contribute to the promotion of agri-food production. Among the two strategies, export promotion would not work for agricultural products but would work for food products. This food export promotion is achieved through an increase in agricultural intermediate inputs. That is, agricultural products could be exported indirectly through food processing and exportation. This indicates that our policymaking needs to take account of the participation of the agri-food industries in the global food value chain. Japan’s food industries have become more and more dependent on imported inputs. Our finding—that freer agri-food trade would promote both agricultural imports and food exports—implies a comparative advantage for the Japanese food industries. The Japanese agricultural sectors would survive by using their linkage with the domestic food industries. The agri-food FTAs would be beneficial not only for the agri-food producers but also for consumers in Japan. As shown by earlier studies, such as Arkolakis et al. (2012), and by our sensitivity analysis (in the Appendix), these estimated impacts of agri-food FTAs are larger when we take into account farm/firm heterogeneity and product differentiation. This implies that earlier agri-food studies assuming homogeneous goods and farms underestimated the potential competitiveness of the Japanese agri-food industries.

Our study assumed a simple FTA scenario, only bilateral tariff reduction by 10% points. More sophisticated scenarios can be developed which consider factors such as initial levels of border protection, the depth of its reduction, and differences in income and economic size between the two parties. The regional aggregation patterns can be changed, to patterns such as the Asia Pacific Economic Cooperation region, the Regional Comprehensive Economic Partnership region, and the TPP member countries, to take account of the recent mega-FTAs. Our model is equipped with elasticity of substitution among varieties.
\sigma^MLZ_t and Armington’s elasticity \sigma^ARM_t, which represent the degree of product differentiation within country and between countries. As Kang (2008) shows for the manufacturing sectors in China, Korea, and Japan, the elasticity of substitution among varieties has evolved over time, reflecting the deepening of the product differentiation and development of global food value chains that accompany industrial development. We can simulate a change in these elasticities to evaluate their impact on the agri-food trade and production.
Figure 4.1: Exports from Japan [Changes from the Base, %]

Note: The far left column contains the countries/regions with which it is assumed that Japan will establish FTAs. When we assume agri- and food-FTAs simultaneously, due to interaction effects the results differ slightly from the sum of the results for the two individual FTAs shown in the figure.
Figure 4.2: Imports by Japan [Changes from the Base, %]

Note: The far left column indicates the countries/regions with which it is assumed that Japan will establish FTAs. When we assume agri- and food-FTAs simultaneously, due to interaction effects the results differ slightly from the sum of the results for the two individual FTAs shown in the figure.
Figure 4.3: Domestic Production in Japan [Changes from the Base, %]

Note: The far left column indicates the countries/regions with which it is assumed that Japan will establish FTAs. When we assume agri- and food-FTAs simultaneously, due to interaction effects the results differ slightly from the sum of the results for the two individual FTAs shown in the figure.
Figure 4.4: Number of Firms/Varieties Produced in Japan [Changes from the Base, %]

Note: The far left column indicates the countries/regions with which it is assumed that Japan will establish FTAs. When we assume agri- and food-FTAs simultaneously, due to interaction effects the results differ slightly from the sum of the results for the two individual FTAs shown in the figure.
Figure 4.5: Impacts on Consumers Welfare in Japan [Equivalent Variations, million USD]

Note: The far left column indicates the countries/regions with which it is assumed that Japan will establish FTAs. When we assume agri- and food-FTAs simultaneously, due to interaction effects the results differ slightly from the sum of the results for the two individual FTAs shown in the figure.
References

[Input-Output Tables for Agriculture, Forestry and Fishery, and their Related Industries for 2011 (Including Expenditure on Food and Drink)].”

Nikkei (2016b) “Rekusasu-noki-wa Hitsuyo-ka [Do They Need Lexus-faming Machines?],” April 12.

Appendix: Sensitivity Analysis

A.1 Constant-Returns-to-Scale Cases in Agri-food Sectors

We examine the robustness of our simulation results by employing an alternative assumption of constant-returns-to-scale (CRS) production technology for the five agri-food sectors of our interest: vegetables and fruits, livestock, meat products, dairy products, and the other food sectors (Table 2.1). (The other two light and heavy manufacturing sectors are kept as the increasing-returns-to-scale (IRS) sectors.)

Under this alternative assumption, we conduct the same simulation experiments and find smaller impacts in many aspects (Figure A.1–A.2). Impacts on exports and imports are found to be the same qualitatively under the agri-FTAs. In contrast, the food-FTAs would bring about qualitatively different results for the livestock and meat products sectors, compared with the results shown in the main part of the paper (Figures 4.1–4.2). However, the qualitative difference in the export and import changes would not be translated at all into a qualitative difference in the output changes. Quantitatively, the output changes are found to be about half of those of the results in the main part of the paper (Figure 4.3). The welfare impacts are found to be about a quarter of those found in Figure 4.5. The welfare gains originate solely from the food-FTAs; an agri-FTA would bring about negative welfare changes due to deterioration of terms of trade, though those changes would be very marginal.
Figure A.1: Japan’s Agri-Food Exports, Imports, and Production (Constant-returns-to-scale Case) [Changes from the Base, %]
Figure A.2: Impacts on Consumers Welfare in Japan (Constant-returns-to-scale Case) [Equivalent Variations, million USD]
A.2 Alternative Parameter Values

We conduct sensitivity analyses with respect to the three key elasticity parameters in our Melitz-type CGE model (Table A.1). For the five agri-food sectors, we alternatively assume 30% larger and 30% smaller values for Armington’s elasticity of substitution σ_{i}^{ARM}, 10% smaller and 30% larger ones for the elasticity of substitution among varieties σ_{i}^{MLZ}, and 30% larger and 30% smaller ones for the shape parameter of the Pareto distribution of the firm’s productivity k_i. The results show that changes in exports, imports, and domestic production increase with larger σ_{i}^{ARM} and smaller σ_{i}^{MLZ} (Figure A.3–A.5). The welfare impacts increase with larger σ_{i}^{ARM} and smaller σ_{i}^{MLZ} (Figure A.6). Perturbing k_i upward and downward by 30% alters the welfare impacts little. While some quantitative differences are found, the results are all found to be robust and consistent qualitatively.

13 When we assume 30% smaller values for σ_{i}^{MLZ}, we encounter a computational difficulty, probably due to too large markups, generated by the small elasticity.
Table A.1: Assumed Elasticity Values and Shape Parameters

<table>
<thead>
<tr>
<th></th>
<th>Armington’s Elasticity, σ^{ARM}</th>
<th>Elasticity of Substitution Among Varieties, σ^{MLZ}</th>
<th>Shape Parameter of Pareto Distribution, k_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>5.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>2.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetables and Fruit</td>
<td>1.85 b</td>
<td>1.98 b</td>
<td>2.40 b</td>
</tr>
<tr>
<td>Livestock</td>
<td>2.07 b</td>
<td>2.44 b</td>
<td>2.20 b</td>
</tr>
<tr>
<td>Other Agriculture</td>
<td>2.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat Products</td>
<td>4.14</td>
<td>3.80 c</td>
<td>4.60 d</td>
</tr>
<tr>
<td>Dairy Products</td>
<td>3.65</td>
<td>3.80 c</td>
<td>4.60 d</td>
</tr>
<tr>
<td>Processed Rice</td>
<td>2.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Food</td>
<td>1.89</td>
<td>3.80 c</td>
<td>4.60 d</td>
</tr>
<tr>
<td>Mining</td>
<td>5.31</td>
<td>3.80 c</td>
<td>4.60 d</td>
</tr>
<tr>
<td>Light Manufacturing</td>
<td>3.43</td>
<td>3.80 c</td>
<td>4.60 d</td>
</tr>
<tr>
<td>Heavy Manufacturing</td>
<td>3.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: a: GTAP Database version 9a; b: Akune and Hosoe (2018); c: Bernard et al. (2003); d: Balistreri and Rutherford (2013).
Figure A.3: Exports from Japan [Changes from the Base, %]

(From the left, cases with $\sigma_i^{ARM}(-30\%), \sigma_i^{ARM}(+30\%), \sigma_i^{MLZ}(-10\%), \sigma_i^{MLZ}(+30\%), k_i(-30\%), k_i(+30\%))
Figure A.4: Imports by Japan [Changes from the Base, %]

(From the left, cases with $\sigma_i^{ARM}(-30\%), ~\sigma_i^{ARM}(+30\%), ~\sigma_i^{MLZ}(-10\%), ~\sigma_i^{MLZ}(+30\%), ~k(-30\%), ~k(+30\%)$)
Figure A.5: Domestic Production in Japan [Changes from the Base, %]

(From the left, cases with $\sigma_i^{\text{ARM}}(-30\%)$, $\sigma_i^{\text{ARM}}(+30\%)$, $\sigma_i^{\text{MLZ}}(-10\%)$, $\sigma_i^{\text{MLZ}}(+30\%)$, $\kappa(-30\%)$, $\kappa(+30\%)$)
Figure A.6: Impacts on Consumers Welfare in Japan [Equivalent Variations, million USD]

(From the left, cases with $\sigma^\text{ARM}_{i}(-30\%), \sigma^\text{ARM}_{i}(+30\%), \sigma^\text{MLZ}_{i}(-10\%), \sigma^\text{MLZ}_{i}(+30\%), k(-30\%), k(+30\%))
Annex: Additional Figures

While we show the impact of FTAs in percentage changes from the base, the figures below show the impact in changes in value (million USD in 2011).

Figure B.1: Japan’s Exports, Imports, and Domestic Production in Value [Changes from the Base, million USD]